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Abstract

This article addresses a discrete event CLOUD simulator, namely CLOURAM (CLOUD Risk Assessor and
Manager) to estimate the risk indices in large CLOUD computing environments, comparing favorably with the
intractably theoretical Markov solutions or hand calculations that are limited in scope. The goal is to optimize the
quality of a CLOUD operation and what countermeasures to take to minimize threats to the service quality by reserve planning of
reserve crew members. Cost and benefit analysis is examined after the solutions.
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1. Introduction

CLOUD computing, a relatively new form of computing using services provided through the largest network
(Internet) has become a promising and lucrative alternative to traditional in-house IT computing services, and
provides computing resources (software and hardware) on-demand. Why big firms delay using CLOUD? The
response lies in the common belief that companies are hesitant to switch to CLOUD for applications that manage
key parts of their businesses due to lack of trust as they believe there is still too much risk associated with potentially
unreliable Internet connections and dependence on third parties to manage computer servers (See Wall
Street Journal, July 17, 2014; Marketplace: “Why Big Firms Delay Using Cloud” by S. Norton and C. Boulton).
Consequently, a quantitative assessment of the quality of service (QoS) in such enterprises is critically needed. The
quality of CLOUD computing services can be difficult to measure, not only qualitatively but most importantly
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quantitatively. An algorithmic discrete event simulation accompanied by related statistical inference is conducted to
estimate the availability indices in a CLOUD computing environment of small or large service-based systems to
mimic real life operations. However, as users (companies, organizations and individual persons) turn to CLOUD
computing services for their businesses and commercial operations, there is a growing concern from the security,
privacy and availability perspectives as to how those services actually rate. Moreover, the federal government has
approved commercial products to operate on a defense CLOUD, marking the industry’s first online offerings with
this level of security accessible to the military via such an environment [1].

If the reserve capacity (or margin) is less than a zero margin, then we have an undesired deficiency or loss of
service. Note that LOLP: Loss of Load Probability. Once these hours (or cycles) of negative margin are added, it
will constitute the expected number of hours of loss of load, LOLE. Divided by the total number of exposure units
such as 8760 hours (NHRS) for a year, it will give the LOLP = LOLE/NHRS. Once the LOLE is known, and its
frequency (f=number of such occurrences of deficiencies per annum), then the average duration, d=LOLE/f, will
indicate how long on the average a loss of service is expected to last. What are some of most significant scenarios on
“What If” will be studies in subsequent sections, such as what happens when the cloud managers reduce the size of
the maintenance crew and at what level should they stop discounting the crew size for best ROI (Return on
Investment).

2. CLOUD Resource Management Planning for Employment of Repair (Maintenance) Crews

A most popular example to a what-if query as frequently executed in simulation engineering practices is the
resource allocation, which is one of the most vulnerable and softest (weakest) points of the entire CLOUD
computing process. We will study the effect of the number of maintenance crews from full to lower. Figure 1 below
in the Appendix has originally displayed an unreliability index of 5.44% for 348 units.

The total number of production units is 348 available. In a new analysis, we will simulate (10000 runs or years)
for a reduced resource of 100 crews to see the impact. That is how much less reliability we will have to suffice with
if we save money by eliminating 248 repair (recovery) crews. This time we are expecting wait times and more
unreliability from our CLOUD operation. Now see Figure 2 below in the Appendix. The unavailability index is
unfavorably upped to 7.36%, a negligible difference when you take into account the savings you will accrue from
employing 248 less repair crews. See Figure 3 below in the Appendix. We now will reduce even further 50 more
repair crews, 298 less than originally assumed. Finally so, we will employ solely 50 crews to see if it is economical
profitable to do so in Figure 3 below in the Appendix. This time we hit the rock! Outcomes are disastrous. We saw
the catastrophic results of a skyrocketing unreliability of 85.71% (while employing only 50 repair crews) from
merely 7.36% when we had only 50 more crews. The difference is the breaking point [2]. Therefore this CLOUD
management should not lower their repair crews to less than around 100. More detailed studies can be conducted by
trying 99....90....70....60 etc. to see the drastic jump. This cost-benefit portfolio of crew-planning analysis as one of
the most crucial “What-If” scenarios could save millions of dollars for a CLOUD Resource Management to plan
ahead.

3. Step by Step Algorithm CLOUD Management Planning for Employment of Repair Crews

The following software program (CLOUD Management for the manager part of the CLOURAM to follow up
with the assessment part) will show you how to do this in a systematic and algorithmic order. Here we will study
how to implement the effect of maintenance crews on unavailability index. In this analysis we will simulate for a
reduced resource of Crew Intervals (for example 50, 100, 150 ...). Consider an example, where the total number of
production units available is 443. Now let us simulate for the reduced resource of 50 crews, as in Figure 3 below in
the Appendix to see the impact that how unavailability will vary. See Figure 4 below in the Appendix for the input
dialogue box. Initially the unavailability varies slightly, at one point it increases in a drastic manner which is called
breaking point. The CLOUD should not lower the repair crews to less than the breaking point. We can observe, as in
Figure 5 below in the Appendix, the crew break-even point is 143. This cost-benefit portfolio of Reserve Crew
Planning analysis will save millions of dollars’ worth for a CLOUD Resource Management. In Environment
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Parameters Section, three buttons are added which indicates type of execution that is Normal (only risk assessment
without management), Crew Planning and Product Planning.

First begin with selecting one among the three types of execution. Normal button is selected to implement a normal
execution of Cloud. Crew planning button is selected to implement Reserve Crew Planning and to obtain Crew Plot
so as to estimate the optimal crew value to halt at for ensuring certain availability (lack of risk). Product planning
button is further selected to implement Reserve Product Planning and to obtain Product Plot so as to find the optimal
capacity value to halt at so to ensure a desired availability. Follow the below algorithmic steps to implement
Maintenance Crew Reserve Planning:

Step 1: Radio button Crew Planning must be selected as shown in Figure 4 below in the Appendix.

Step 2: # of Crew Increments in default is given as 10, which indicates the number of crew intervals required to
plot a graph.

Step 3: Crew Intervals in default is given as 50, which indicates the difference between two crew (working
personnel employed) values.

Step 4: ALOLP Crew in default is given as 0.3, which indicates that if the difference between the two consecutive
LOLP values is greater than 0.3, then the crew addition stops at the lowest LOLP value.

Step 5: Starts at Crew is the total number of maintenance crews initially, for data2000.txt there are 443

crews. Step 6: Starts at LOLP Value is the LOLP value for the initial number of maintenance crews.

Step 7: Stops at Crew is the optimal stopping crew value.

Step 8: Stops at LOLP Value is the optimal stopping LOLP value.

Step 9: Final Crew Value is the number of crews that are remaining at the end of the crew planning
implementation.

Step 10: Final LOLP Value is the LOLP value for number of crews that are remaining at the end of the crew
planning implementation.

Step 11: Cost in default given as $1,000,000.00 for a placeholder, which indicates the dollar amount loss to the
entire Cloud operation annually as accrued by one percent increase in Loss of Load resulting from sparing the
determined number of extra crew members.

Step 12: Benefit in default given as $30,000.00, which indicates the dollar amount of investment spent for each new
crew member employed per year, hence amount saved when a crew is released.

Now let us see how to implement the effect of maintenance crews on unavailability index. In this analysis we will
simulate for a reduced resource of Crew Intervals (for example 50, 100, 150 ...). Consider a large cyber CLOUD
example, where the total number of available units served by the same number of serving crew units available is
443. Now let us simulate for the reduced resource of 50 crews, as in Figure 5 below in the Appendix to see the
impact that how unavailability will vary with the reduction of crew. Initially the unavailability varies slightly; at one
point it increases in a drastic manner which is called break-even point. The CLOUD should not lower the repair
crews to less than the break-even point. Figure 6 below in the Appendix shows the output for the input dialogue box
in Figure 5 below in the Appendix for which using data 2000.txt, the stopping crew value is 143.

Profit/Loss: indicates whether there is profit or loss by stopping at the optimal point. If cost of the LOLP increasing
is greater than benefit of sparing (saving) repair crew members, then it is Loss (negative value). If cost is less than
benefit then it is Profit (positive value).

Break Even Value: indicates the cost per percent for LOLP index required to have neither profit nor loss.

Step 13: Solution is as follows. Now 300 x $30K = $9,000,000 gained. ALOLP= 0.0126 lost, i.e., 0.0126 x 100% x
$1M=$1,260,000. $9M-$1.26 = $§7.74M or (+) $7,739,029 exact.

Figure 5’s cost-benefit portfolio of Reserve Crew Planning analysis will show to save or lose millions of dollars’
worth for a CLOUD Resource Management. It also indicates what the break-even value would be if RHS=LHS in
terms of cost and benefit so that the difference (profit or loss) is zero at balance. See Figure 6 below in Appendix for
plotting the process. Further, Figure 7 below in Appendix depicts the triplet of operating modes (up, down, waiting)
where additionally waiting time is now a reality due to imperfect number of repair crews [3].
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4. Some Further Validations of Reserve Crew Planning

When stopping crew value and stopping LOLP value is 0, a message indicates to simulate again with different
ALOLP crew constraint as red-flagged in Figure 8 shown below in Appendix. This message that the analyst needs to
enter a new set of feasible input values which is also shown in Figure 9 in Appendix.

5. Discussions and Conclusion

The CLOUD computing as the new century’s paradigm change of doing business at a larger scale of computing
supported by the internet of all things, must be measured, monitored and managed to see where things are leading to
rather than letting it to take charge by the oft-practiced cruise control alternative. The crucial problem with CLOUD
computing is its occasional, though dramatic lack of desired availability and security [4]. Once assessed, the next
question becomes as to how to manage, rather mitigate the lack of availability. One of the most predominant
measures to do that is the leverage of maintenance crews. Where do we halt recruiting the maintenance the repair
crews and what is the breakeven value of the number of crews that need to be kept ready for service to monitor the
desired availability at best? Once can certainly not achieve this cost optimization by sheer guessing or hand
calculating. This research shows through the related software how best to achieve cost optimal reserve planning for
the maintenance crews, a process which can cost CLOUD managing or facilitating companies millions of dollars if
not rightfully estimated in advance [5].
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Figure 1. The simulation results (1, 000 years) for a large CLOUD with 348 units. Run time: 2 min 5s.
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Figure 6. Output Graph in response to Input of Figure 4 for 1000 simulations with 443 repair crews.
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Figure 8. Output dialogue box for Figure 4’s input for 100 runs when a new set of input for “ALOLP Crew”

required as above.
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Figure 9. Plot of the LOLP (risk) vs. # Maintenance Crews requiring a new set of feasible input values.
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