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Risk analysis, comprising risk assessment and risk management stages, is one of
the most popular and challenging topics of our times because security and privacy,
and availability and usability culminating at the trustworthiness of cybersystems
and cyber information is at stake. The precautionary need derives from the
existence of defenders versus adversaries, in an everlasting Darwinian scenario
dating back to early human history of warriors fighting for their sustenance to
survive. Fast forwarding to today’s information warfare, whether in networks
or healthcare or national security, the currently dire situation necessitates more
than a hand calculator to optimize (maximize gains or minimize losses) risk due
to prevailing scarce economic resources. This article reviews the previous works
completed on this specialized topic of game-theoretic computing, its methods and
applications toward the purpose of quantitative risk assessment and cost-optimal
management in many diverse disciplines including entire range of informatics-
related topics. Additionally, this review considers certain game-theoretic topics
in depth historically, and those computationally resourceful such as Neumann’s
two-way zero-sum pure equilibrium and optimal mixed strategy solutions versus
Nash equilibria with pure and mixed strategies. Computational examples are
provided to highlight the significance of game-theoretic solutions used in risk
assessment and management, particularly in reference to cybersystems and
information security. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION TO GAMING AND
HISTORICAL PERSPECTIVE TO GAME
THEORY’S ORIGINS

Game playing is an unlimited topic in scope as
old as the ancient human history. Although

its first seeds were planted in the latter part of
the 19th century, the popularity of game theory
skyrocketed in the 20th century. This was a period of
devastating wars and conflicts that needed urgently
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smart solutions with the advent of transistor-led
electronics, and further, vast computer storage space
and unprecedented computational speed. In the 21st
century, the cyber wars brought forward a dire
necessity to employ gaming solutions to outsmart
the hostile hackers and adversaries, in lieu of
former invading troops or bombarding warplanes.
In retrospect, the first human hunters were involved in
game solutions against their enemies, i.e., carnivorous
animal world, who played the same game, all to
quell hunger. Gaming may mean many things to
different people, such as gambling or simulation
or politics and warfare. According to Shubik,1 the
disciplines most heavily involved in the utilization of
games have been management science and operations
research, psychology, education, political science,
sociology, engineering, computer and military science,
and economics. The major expenditures, in terms of
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both time and other resources have been made through
military or business or education support.

There is no mystery about the origins of game
theory, which is the mathematical study of conflict sit-
uations as a science of rational conflict.2 It was, to all
intents and purposes, reborn in 1944 as an established
field with the publication of a single tough-to-read pio-
neering book, Theory of Games and Economic Behav-
ior by John von Neumann and O. Morgenstern which
proposed that most economic questions could be ana-
lyzed as games, and first laid out the finite two-person
zero-sum game.3 The 1944 book arrived just about or
even a few years before Linear Programming methods
came upon the scene in 1947 by George Dantzig who
worked in close connection with Theory of Games.
This theory was originally proposed by the French
mathematician Emile Borel about 1921 as noted in
Ref 4. Borel’s theory was successfully analyzed by J.
von Neumann who proved its key result, the Min-
imax theorem in 1928. Neumann and Morgenstern
in 1944 defined the minimax solution and showed
that this solution exists in all two-player zero-sum
games in which the interests of players are diametri-
cally opposed with no common interest. Thereupon,
Dantzig’s simplex method became an important tool
both in the practical and theoretical investigations in
the theory of matrix games (so-called zero-sum, two-
person games) in game theory. Six years after, Nash
in 1950 proposed what became known as Nash equi-
librium as a way of extending game-theoretic analyses
known as no-zero-sum games by determining a steady-
state solution that no other player can outsmart.5 Even
before 1944, the first studies of games in economics lit-
erature were the papers by Cournot in 1838,6 Bertrand
in 1883,7 and Edgeworth in 18978,9 on the pricing
and production of an oligopoly, which is a market or
industry dominated by a small number of sellers.

In the 19th century models of Cournot and
Bertrand, the strategies of the players were simply their
choices of outputs and prices. One of the insights of
von Neumann and Morgenstern in the middle of a new
20th century was that the strategies of a game could
also be more complex plans for contingent reconcilia-
tory actions; for example, I’ll cut my price tomorrow,
if you cut yours today. Selten, an Esperantist (foremost
proponent of Esperanto language) and the 1994 Nobel
laureate awarded for equilibrium notions in dynamic
games in 196510,11 as well as Harsanyi in 1967,
introduced concepts widely used in recent years.12

Harsanyi proposed a way in which all players know
the payoff functions of the other players, to model situ-
ations of incomplete information where the players are
unsure of one another’s payoffs. Harsanyi’s Bayesian
Nash equilibrium is precisely the Nash equilibrium of

the imperfect-information representation of the game,
and is the cornerstone of game-theoretic analyses as
noted in Ref 13, p. 210. Nash, Harsanyi, and Selten
shared the Nobel Prize in economic sciences in 1994.14

According to Osborne and Rubinstein,15 game the-
ory is a bag of analytical tools to help understand
the phenomena that we observe when decision mak-
ers interact, whereby the models of game theory are
highly abstract representations of classes of real-life
situations. This means game theory uses mathematics
to express its ideas formally but mathematical results
are interesting only if they are confirmed by human
intuition. In short, game theory deals with decisions in
conflict situations. Interest in game theory as a science
of rational conflict is extremely widespread in our age
of competition, strategy, and gamesmanship.12 ‘‘Does
Game Theory Work?’’ asks Binmore and responds
that Game Theory does not work in the laboratory.16

People do not play Nash equilibrium and they do not
use their maximin or minimax strategies in two-person
zero-sum games. But who can claim and guarantee
that any theory can work in all environments, just
as Newton’s laws of motion do not predict well at
the bottom of the sea, and also were modified by
Einstein’s relativity theory in 20th century? There-
fore, game theory cannot be reasonably expected
to work in unfavorable environments in which its
tacit assumptions have whatsoever no chance of being
true. To the eye of the game theorist, there exist
four essential elements for instance in the chess or
poker game: (1) two players, (2) opposite interests,
(3) finite game, and (4) no surprises.17,18 However,
modern game theory has stretched its limits to new
concepts by Aumann (rational expectations)19 and
Kadane (subjective probability)20 and more. Aumann
writes: (1) If the game is not two-person zero-sum,
even if there is just one Nash equilibrium, it is not
clear what players should expect as payoff in an n-
person game. (2) Nash equilibrium is a solution for
strategic games but rational expectations are more
fundamental for the one-shot game if not repeated.

History of Applications of Game Theory
in Cyber-Security Risk Analysis
Cybersystems security which did not exist when game
theory debuted has recently evolved into a complex
and challenging problem. The area of cyber-network
defense mechanism design has been receiving immense
attention from the research community for more than
two decades ever since the first Internet message
was delivered thanks to DARPA research (Defense
Advanced Research Projects Agency) www.darpa.mil.
However, the cyber-security problem is far from com-
pletely solved. Scientists are exploring the applicability
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of game-theoretic approaches to address the security
issues and some of these approaches look promis-
ing. The goal of the ongoing research is to manage
the cybersystems against malicious cyberattacks by
using game theory and computationally intensive algo-
rithms. The initial papers, among many others specif-
ically on game-theoretic risk analysis, started appear-
ing a decade ago not long after the tragic events of
9/11 in 2001 as in a literature survey.21 This trend con-
tinued in 2002 as applied to information warfare by
Hamilton, Saydjari et al.22,23 Concurrently, the role of
trust and game strategies as implemented to network
security by Lye and Wing24,25 appeared. Following,
Cavusoglu et al.26 and Patcha and Park in 2004 wrote
on IT security and mobile networks respectively.27 In
2005, Jormakka and Mölsä published their pioneering
paper titled Modeling Information Warfare as a Game
where they treated Terrorist Game: Bold Strategy con-
cept with Nash equilibrium.28 Sahinoglu also in 2005
pioneered with his quantitative and hybrid Security
Meter computational model29 at the risk assessment
stage to be followed up by another at the risk
management stage.30 His findings were followed by
other pertinent game-theoretic risk applications.31–36

After 2004, research on Adversarial Risk Analysis
followed until the present time due to a growing
interest owing to a multiplicity of terror activities on
the rise.37–39 Massive Stackelberg security games,40,41

decision-theoretic rough sets42 and attack-defense
models, which were oriented to network security risk
assessment were a few of the examples in search
of a working algorithm to quantify and manage
risk.43,44 Later in 2009 to 2011 multiple papers fol-
lowed by a group of game-theoretic researchers on
defense-related game theory.45–52 Luo et al. in 2010
published a non-cooperative non-dynamic game with
incomplete information.53 Recently, problems in
counterterrorism and corporate competition have
prompted research that attempts to combine math-
statistical risk analysis with game theory in ways that
support practical decision making. Wang and Bank’s
latest article applies these methods of adversarial risk
analysis to the problem of selecting a route through a
network, in which an opponent chooses certain ver-
tices for ambush.54 However, recently well-proposed
methods are missing the link from theory to framing
and transforming theorems into working expert sys-
tems or software programs to generate solid results
that are commercially usable and cost efficient. Game
theory, therefore, is a branch of applied mathemat-
ics that attempts to analytically model the rational
behavior of intelligent agents in strategic situations,
in which an individual’s success depends on the deci-
sions of others. While initially developed to analyze

competitions in which one individual does better at
another’s expense, it recently evolved into techniques
for modeling a wide class of interactions, characterized
by multiple criteria.14,15

INTUITIVE BACKGROUND—
CONCEPTS, DEFINITIONS, AND
NOMENCLATURE OF GAME THEORY

Game Theory Definitions
A branch of mathematics, devoted to the logic of
decision making in social or political interactions, con-
cerns the behavior of decision makers whose decisions
affect each other. Note that each decision maker has
only partial control over the outcome. Game theory is
a generalization of decision theory where two or more
decision makers compete by selecting each of the sev-
eral strategies. Decision theory whereas is essentially
one-person game theory. In general, any game involves
the following. Players: An individual or a group of
individuals can be considered a player such as indi-
viduals or teams, companies, political candidates, and
contract bidders. Actions (strategies): The set of moves
available to choose from for each player. Outcomes:
An outcome in a game is the act of each player choos-
ing a move from its action set so that numerical payoffs
reflecting these preferences can be assigned to all play-
ers for all outcomes. Preferences: Each player prefers
some outcome to others based on payoffs or utilities
associated with these outcomes. In spite of its name,
game theory is not specifically concerned with recre-
ation and pastimes (like children’s games) and a less
misleading name would have been the theory of inter-
dependent decision making, but it is too late to rename
game theory without risking even worse confusion.53

A simple example will help to provide an intuitive
understanding of the kinds of social interactions
involving interdependent decision making, which falls
within the purview of game theory. We will start with
the most popular two-player zero-sum games. Zero-
sum means that the gain (or loss) for one player is
equal to the loss (or gain) for the other player with
diametrically opposite interests. In other words, what
one player wins becomes what the other player loses.

A Price War Example
Two retail companies are each trying to carve out a
larger slice of a market for which they compete. Each
has to decide on a strategy in ignorance of the other’s
decisions whether or not to: (1) increase advertising its
product, (2) provide quantity discounts, or (3) extend
warranty terms. We demonstrate a two-player, zero-
sum game and its solution of the two companies
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TABLE 1 Modified Payoff Table Showing the % Gain (loss) in Market Share for Firm A (B)

A / B % Increase 
Advertising: b1

% Quantity 
Discounts: b2

% Extended 
Warranty : b3

ROW MINIMUM

% Increase Advertising a1 4 3 2
2 = Maximin

%Quantity Discounts a2 −1 4 1 −1

Extended Warranty a3 5 −2 5 (0) −2

COLUMN MAXIMUM 5 4 = Minimax 5 (2 = Minimax) Result: The solution to 
the game is for Firm A to 
raise advertising (a1) and 

for Firm B to extend 
warranty (b3) by 2%

Firm A’s market share will increase by 2%. Firm B’s shall decrease by 2%. 2–4%, a pure strategy does not exist initially. It is not optimal for each firm to
predict and select a pure strategy regardless of what the other does. By trial and error, optimal solution is a balanced strategy (Maximin = Minimax = 2).

competing for market share. A payoff table showing
the percentage gain in the market share for Company
A for each combination of strategies is shown in
Table 1. Any gain in market share for Company A is
a loss in market share for Company B because it is a
zero-sum game.55,56

Minimax strategy exists if Maximum (row
minimums) = Minimum (column maximums). The
game is said to have a saddle or an equilibrium point.
A game has a pure strategy solution when the players
cannot improve their payoff by changing to a different
strategy. What to do when pure strategy does not
exist?

Identifying an Optimal Mixed Strategy
Solution
With a mixed strategy, each player selects its strat-
egy according to a probability distribution. In the
market share example in Table 1, each company will
first determine an optimal probability distribution
for selecting whether to increase advertising, provide
quantity discounts or extend warranty. Then, when
the game is played each company will use its proba-
bility distribution to randomly select one of its three
strategies. Now consider the game from the point of
view of Company B to select one of its strategies based
on the following probabilities: PB1 (to select strategy
b1), PB2 (to select strategy b2), PB3 (to select strategy
b3). Since the objective of Company B is to minimize
its expected loss, LOSSB, we have the following lin-
ear programming (LP) model. Note, one can guess

that the value of the game will be between 2% (Max-
imin) and 4% (Minimax) in Table 1 before solving the
mixed strategy problem by the set of linear equations:

PB1, PB2, PB3, LOSSB ≥ 0,

where Min LOSSB, s.t. (subject to) :

4PB1 + 3PB2 + 2PB3 − LOSSB < = 0 (Strategy a1)

−1PB1 + 4PB2 + 1PB3 − LOSSB < = 0 (Strategy a2)

5PB1 − 2PB2 + 5PB3 − LOSSB < = 0 (Strategy a3)

PB1 + PB2 + PB3 = 1;
Solved linear programming results using the CD-

ROM Management Scientist in Ref 55

PB1 = 0, PB2 = 0.375, PB3 = 0.625,

LOSSB = 2.375 (objective function value).

Results of the Two-Player Mixed Strategy
Game
Firm B’s optimal mixed strategy is to provide
quantity discounts (b2) with probability 0.375, extend
warranty (b3) with probability 0.625 and should not
increase advertising b1 with probability 0. Expected
loss of market share for Firm B of this mixed strategy is
2.375% or a gain of 2.375% for Firm A. This tableau
is in equilibrium. Firm B (or A) cannot improve the
game by changing the B’s (A’s) probabilities. The
expected B-loss (or A-gain) of this mixed strategy is
an in-between value of 2.375%, which is better than
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Firm B’s best pure strategy (b2) with minimax: 4% of
share in the payoff table or A’s maximin: 2%.

Other solutions to games exist besides
two-player zero-sum strategy for Maximin =
Minimax.3,55,57

Backward Induction (Solution Concept
for Extensive Form Games)
Steps similar to Bellman’s dynamic programming are:
(a) determine the optimal choices in the final stage
K for each history hK; (b) go back to stage K − 1,
and determine the optimal action for the player on
the move there, given the optimal choice for stage
K; (c) roll back until the initial stage is reached
(55Chap. 18; 57p. 23/43).

Nash Equilibrium: NE (Solution Concept
for Normal Form Games)
In summary, the game solution theory we review has
two components. First, each player chooses her/his
action according to the model of rational choice, given
her/his belief about the other player’s actions. Second,
every player’s belief about the other players’ actions
is correct. These two components are embodied in the
following definitions. Definition 1 (Ref 15, p. 22): An
action profile a∗ with the property that no player i
can do better by choosing an action different from
a∗

i given that every other player j adheres to a∗
j .

Nash equilibrium of a strategic game is an action
profile in which every player’s action is optimal given
every other player’s action. It is a steady state of
an idealized situation. Expressed differently, Nash
equilibrium embodies a stable social norm: if everyone
else adheres to it, no individual wishes to deviate from
it. Using a new notation, we can restate the condition
for an action profile a∗ to be a Nash equilibrium as
follows. Definition 2 (Ref 15, p. 23): The action profile
a* in a strategic game with ordinal preferences is a
Nash equilibrium if, for every player i and every action
ai of player i, a∗ is at least as good as according to
player i’s preferences as the action profile (ai, a∗ − 1).
Player i chooses ai and every other player j chooses a∗

j .

Equivalently, for every player i, Ui(a∗) ≥ Ui(ai,
a∗

−1) for every action ai of player i, where Ui (U
for utility) is a payoff function that represents player
i’s preferences. This definition implies neither that a
strategic game necessarily has Nash equilibrium, nor
that it has at most one. Examples in this review show
that some games have a single Nash equilibrium, some
possess none, and others have plenty Nash equilibria.
Nash equilibrium as a much broader concept is
achieved if an operation point is reached where
each player is giving her/his best response facing
her/his opponents’ strategies. That is, for none of
the players there is a unilateral incentive to change
her/his strategy, given that the strategy chosen by all
opponents are fixed. In other words, each player’s
strategy i is a best reply to the strategies of the
others.58

Mixed Strategy of Probabilities in Contrary to
Two Player-Zero Sum Solution for Strategic
Games
Risk management with a mixed strategy is examined
as an alternative to two-player zero-sum if one does
not exist. A pure strategy provides a complete def-
inition of how a player will play a game as in a
two-player zero-sum solution. In particular, it deter-
mines the move a player will make for any situation
she/he could face. A player’s strategy set is the set
of pure strategies available to that player. A mixed
strategy is an assignment of a probability to each pure
strategy or a probability distribution over the player’s
actions. This allows for a player to randomly select
a pure strategy. Since probabilities are continuous,
there are infinitely many mixed strategies available
to a player, even if their strategy set is finite. One
can regard a pure strategy as a degenerate case of a
mixed strategy, in which that particular pure strategy
is selected with probability 1 and every other strat-
egy with probability 0. Not all two-player zero-sum
games have a saddle point minimax = maximin, as
is shown in Table 2 where we observe that minimax

TABLE 2 Two-Player Mixed Strategy Game Example

Column 1 2 Row Min

Row β=5/8 1-β=3/8

1 α= 3/8 20 −30 −30

2 1−α=5/8 −10 20 −10

Col Max→         20 20

↓
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≥ maximin.1 Von Neumann extended the concept of
both saddle point and strategy by considering proba-
bility mixes of strategies called mixed strategies. Von
Neumann also argued that the correct play for Person
1 in a game such as shown in Table 2 below would
be to use a random device (such as coin or pair of
dice) to generate the appropriate odds. In this case
select strategy 1 with a probability of 3/8 and strategy
2 with a probability of 5/8. For example, in a 2 × 2
setting against any strategy of Person 2, this gives Per-
son 1 an expected gain in a scenario where risks are
chosen as in Table 2 to assure Nash equilibrium to be
proven in Section Random Probabilistic Selection for
Nash Mixed Strategy Equilibria—Various Scenarios.

(3/8)(20)+(5/8)(−10) = 5/4 (against 1 of Person 2),

(3/8)(−30)+(5/8)(20) = 5/4 (against 2 of Person 1).

We plan to implement a varying range of mixed
strategy solutions, including a Nash equilibrium sce-
nario, as a steady state to see the impact so as to
compare with a two-player zero-sum solution. A
mixed strategy equilibrium predicts that the outcome
of a game is stochastic, so that for a single play its pre-
diction is less precise than that of a pure strategy. How
the Nash equlibrium solutions may be derived for
several examples as alternatives to the conventional
mixed strategy is illustrated in the following text.

RANDOM PROBABILISTIC SELECTION
FOR NASH MIXED STRATEGY
EQUILIBRIA—VARIOUS SCENARIOS

Defender decides whether to use selection combina-
tion or not. Adversary decides whether to game the
combination or the single classifier. We use random
probabilistic selection based on random primitive as
a defense against gaming of the selector. Let us con-
sider a static game in mixed strategies where both
players randomize between the two options by solv-
ing the game for optimal randomization probability
for each player. Game theory is one of the possible
ways to study information warfare with mathematical
models. Modeling Information Warfare as a Game by
Jormakka and Mölsä28 presents four example games
which illustrate the different requirements for an effec-
tive playing strategy in information warfare. These
games determine how a bold playing strategy can
lead to domination, how a mixed playing strategy can
reduce domination, how it can be useful to play a
dominating strategy only part of the time, and how
excessive domination can lead to rebels where all
playing parties lose.

Random Probabilistic Selection
The possible Nash equilibria involving mixed
strategies can be found by differentiating payoff
functions as follows:

α—the probability of adversary gaming the
selector

β—the probability of classifier using the selection
combination

Expected cost of the payoff matrix:

�C = αβc11 + (1 − α)βc12 + α(1 − β)c21

+ (1 − α)(1 − β)c22

The Nash equilibrium (α, β) can be obtained
by solving the simultaneous equations ∂�C

∂α
and ∂�C

∂β

for continuous variables α and β. Application of
differential calculus to Table 2 to determine the
optimal multipliers for Nash equilibrium:

�C = αβ(20) + α(1 − β)(−30) + (1 − α)β(−10)

+ (1 − α)(1 − β)20

∂�C

∂α
= β(20) + (1 − β)(−30) + β(10) − 20

+ β(20) = 0 (1)

∂�C

∂β
= α(20) + α(30) + (1 − α)(−10) − 20

+ α(20) = 0 (2)

Solution: α = 3/8; β = 5/8, same as the mixed strategy
of probabilities selected randomly in Table 2. QED.

Does Nash Equilibrium (NE) Exist for the
Company A/B Problem in Table 1?
No, it does not. Following a battery of analyses with
Nash differential equations:

�C = α1β1(4) + α1β2(3) + 2α1(1 − β1 − β2)

+ α2β1(−1) + α2β2(4) + α2(1 − β1 − β2)

+ 5β1(1 − α1 − α2) − 2β2(1 − α1 − α2) + 0

∂�C

∂α1
= ∂�C

∂α2
= ∂�C

∂β1
= ∂�C

∂β2
= 0

� + 2β1 + β2 = −2

� − 2β1 + 3β2 = −1

� − 3α1 − 7α2 = −5

� 3α1 + 5α2 = 2
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TABLE 3 Matching Pennies

Player 1↓/ Player 2→ Head (β) Tail (1−β)

Head (α) 1, −1

1, −1Tail (1−α) −1, 1

−1, 1

α1 = −11
6 ; α2 = 3

2 ; α3 = 4
3 are infeasible; β2 = 3

4 but
one of β1 = −11

8 and β3 = 13
8 is negative with no

feasible solution.
Therefore a Nash mixed strategy equilibrium

may not always exist. Not every strategic game has
a Nash equilibrium by Osborne and Rubinstein; A
Course in Game Theory as the famous game titled
Matching Pennies demonstrates (Ref 15, Chap. 2,
p. 19). The conditions under which the set of
Nash equilibria of a game are nonempty have been
investigated by Kakutanis’ fixed point theorem of
1941 (Ref 15, Chap. 2, p. 20).

An Example: Matching Pennies
If two players choose the same face, player 2 pays
person 1 a $1. If different faces, player 1 pays player
2 a penalty of $1 as in Table 3.

Note, each person cares about the money he
or she receives. Such a game where the players’
interests are diametrically opposed is called strictly
‘competitive’. The game ‘matching pennies’ has no
Nash equilibrium with none of the cubicles holding
equality. That is, Nash equilibrium isolates no steady
state as follows.

Since the actions can only be discrete (0 or 1),
the payoff function is non-differentiable. The same
result of no Nash equilibrium is confirmed in words in
Ref 15, p. 17. If α = 1, β = 1, �1 = 1 and �2 = −1
as in the payoff matrix for i (first row) = 1, j (first
column) = 1 etc.

Another Game: The Prisoners’ Dilemma
The Prisoners’ Dilemma15,59 game has two players
(the prisoners): George and Tom. Each of them has
two possible strategies: to confess the other or not.

Each of them should concurrently decide which one of
his strategies to follow (without knowing the choice of
the other). Their choices determine their gain: If they
both confess, each gets 1 year in prison, but if only
one confesses, he will be freed (zero prison time) and
used as a witness against each other, who will receive
a sentence of 4 years. Finally, if neither confesses, they
both get 3 years in prison for a minor offense. See
Table 4.

Thus, the action (Confess, Confess) consists of
best response strategies for all players of the game with
the least prison time. Whatever one player does, the
other prefers Confess to the action of Don’t Confess,
so that the game has a unique Nash equilibrium
(Confess, Confess). This action constitutes a Nash
equilibrium of the game. Since all players use a single
strategy in this profile, it is called pure profile or
strategy. That is, if α = 0, β = 0 to represent (Confess,
Confess at i = 2, j = 2); �1 = 1 and �2 = 1 will
yield the least penalty of 1 year prison for each.
The differentiation to find other solutions is out of
question since the two actions (0 or 1) are discrete;
therefore, payoff functions are discontinuous and not
differentiable.

Finding Nash equilibrium in this game seems to
be not a difficult task. But in general, there are more
than two players involved with much more complicate
payoff functions to lead to difficulties to find Nash
equilibrium.

Games with Multiple Nash Equilibria (Terrorist
Game: Bold Strategy Can Result in
Domination)
The main contribution of this game is to show that a
game with more than one conflicting Nash equilibria
can only end up in domination. In a symmetric warfare

TABLE 4 The Prisoner’s Dilemma

Player 1↓/ Player 2→ Don’t Confess (β) Confess (1−β)

Don’t Confess (α) 3, 3 0, 4

Confess (1−α) 4, 0 1, 1
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TABLE 5 Terrorist Game Example betweenT: Terrorist and G: Government

Column (G) → 1 2 Row Min

Row (T) ↓ 1 with pG 2 with (1−pG)

1 1 withpT (−1, −1)* (−5, 0)** −5

2 2 with (1−pT) (1, −5)*** (−10, −10)**** −10

Col Max→ 1 0

at least one of the players (who are rational) is
expected to be in a weaker position then the other
players. Terrorist (T) capture hostages and threaten
to blow up the hostages if the requirements of
the terrorist are not accepted. The government (G)
proposes that terrorists should surrender and put to
jail. Both players have strategies or actions π1 and
π2. The strategy π1 means accepting what the other
player suggests: terrorists surrender or the government
accepts the requirements (e.g., pays the ransom). The
strategy π2 means rejecting what the other player
suggests: terrorists kill the hostages or the government
rejects to negotiate. The payoffs are the following by
Jormakka and Mölsä28:

Note, ∗G accepts ransom; T surrenders but goes
to jail but gets benefit. Both get −1. ∗∗G rejects
ransom; T surrenders and goes to jail. T gets −5
and G gets 0. ∗∗∗G accepts the ransom; hostages are
free. T gets free. T gets 1 and G gets −5. ∗∗∗∗G
rejects ransom; T kills hostages and themselves. Both
get −10. Let us assume T plays mixed strategy
(pTπ1,(1 − pT)π2) where 0 ≤ pT ≤ 1. This signifies
that T plays π1 with the probability of pT and π2 with
the probability of (1 − pT). G plays the mixed strategy
(pGπ1, (1 − pG)π2) where 0 ≤ pG ≤ 1. The expected
payoff vT for the row bound T is given as follows:

VT = −pTpG − 10(1 − pT)(1 − pG) − 5pT (1 − pG)

+ (1 − pT)pG

= pT(5 − 7pG) − 10 + 11pG,

And the expected payoff VG for the columnar G is

VG = −pTpG − 10(1 − pT)(1 − pG) − 0pT(1 − pG)

− 5(1 − pT)

pG = pG(5 − 6pT) − 10 + 10pT

The Nash equilibrium points (pT , pG) for this
game are computed by analyzing the best-response
correspondences pT*(pG), which is the value of pT
that maximizes vT(pG) and also analyzing pG

∗(pT),
which is the value of pG that maximizes vG(pT).
These correspondences describe how the optimal
mixed strategy selection probability depends on the
opponents’ probability. First we identify the pure
strategy Nash equilibria:

pT
∗(0) = 1 and pG

∗(1) = 0: Nash equilibrium
point is (1, 0)

pT
∗(1) = 0 and pG

∗(0) = 1: Nash equilibrium
point is (0, 1)

The possible Nash equilibria involving mixed
strategies can be found by differentiating the payoff
functions for the continuous vector (pT,pG)T :

∂vT

∂pT
= 5 − 7pG = 0 → pG = 5

7

∂vG

∂pG
= 5 − 6pT = 0 → pT = 5

6

The Nash equilibria are thus the following mul-
tiple points (1, 0), (0, 1),

(5
6 , 5

7

)
. These points reflect

the intersection points of the best-response correspon-
dences. The payoffs (vT , vG) at the equilibrium points
are (−5, 0), (1, −5),

(−15
7 , −10

6

)
. The two Nash equi-

libria points with pure strategies (π1, π2) and (π2, π1)
give the best and highest amidst the available payoffs
for vG and vT respectively. Thus, the third equilib-
rium point is not in interest for neither player. As
such, however, these results do not yet provide any
unique solution to this static game.

A bold strategy can however result in a unique
solution in the long term when the static terrorist game
is repeated. What is a bold strategy? Let us assume
that G is bold and always plays π2 (rejecting the rival
so that it will not negotiate with T). Player T may not
believe that G will play boldly, and T may try π2 for
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FIGURE 1 | The Defend–Attack sequential decision game by Rios, Rios, and Banks, and influence diagram (a), and decision tree
(b) representations.

finitely many times. But if G sticks on to playing π2,
T will eventually finish with a finite negative gain and
T will have to start playing π1 in order to minimize
the losses. This familiar real-life game can only end up
in domination, where T accepts that G always plays
π2, and will accept losing on this game, or in blowing
up hostages and terrorists. Then rational player T
must always play π1. A bold rational player always
wins over the less bold rational player in the long
term when the terrorist game is repeated. The cause
for asymmetric warfare is often the domination in the
first place.

There exist three other examples such as:
(1) Evildoer Game (Mixed Defense Strategies Can
Reduce Domination), where there are two players
(an attacker and a victim) with two possible choices
of each and no pure Nash equilibrium. (2) Vandal
Game (Domination Can Have a Limited Time Span),
where Jormakka and Mölsä28 do not consider defense
strategy but only the fact that the victim will simply
not use the system (say, network) and not suffer from
the attack.58 (3) Rebel Game (Extreme Domination
Can Result in Rebellions), where the dominating solu-
tion is expected to cause extremely high costs to the
weaker party, who in turn will eventually start to
rebel. This may fire back at the dominator!

ADVERSARIAL RISK ANALYSIS (ARA)
MODELS
Applications in counterterrorism and corporate com-
petition have led to the development of new methods
for the analysis of decisions when there are intelli-
gent opponents and uncertain outcomes. This field
represents a combination of statistical risk analysis
and game theory, and is sometimes called adversar-
ial risk analysis (ARA). Prevalent methodologies are
based on game theory, decision analysis, or conven-
tional risk analysis, emphasizing separate aspects of

the analysis. Rios, Rios, Banks38,39 describe a uni-
fied framework for the analysis of decisions under
uncertainty in presence of intelligent adversaries. The
case of a Defend–Attack situation, a sequential deci-
sion game is presented in which Daphne (Defender)
chooses a defense in D = {d1, d2} and then Apollo
(Attacker), having observed the defense, chooses an
attack in A = {a1, a2}. The only uncertainty is a
binary outcome S representing the success or failure
of the Attack. Thus, the consequences for both play-
ers depend on the success of his/her attack. Figure 1
shows an influence diagram and a decision tree rep-
resenting this situation. The arcs into a utility node
represent functional dependence.

First, the authors describe how standard game
theory solves the Defend–Attack sequential decision
game. The game-theoretic approach to ARA requires
the probability assessment over S, conditional on
(d, a). As Daphne and Apollo may have different
assessments for success S, these are pD(S = 1 | d,
a) and pA(S = 1 | d, a), respectively. To compute
the Nash equilibrium, one needs the expected utilities
of the players at node S of the tree in Figure 1. As
a simple, realistic, and specific case of ARA, they
consider two applications in auctions. The first is
non-adversarial but introduces the basic ideas, and
another, the adversarial case. Moreover, it applies the
ARA framework to a simultaneous decision-making
problem in which the assessment of probabilities on
the adversary’s actions needs to be more elaborate
than in the sequential Defend–Attack decision game.

Suppose now that Daphne and Apollo are
bidding against each other. Each knows her/his own
valuation of the auctioned object but does not know
the valuation of the other. Each submits their bid in a
sealed envelope without knowing the other’s bid, and
the winner is the highest bidder. This simultaneous
decision-making situation is shown in the influence
diagram in Figure 2 and elaborated in Figure 3.
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FIGURE 2 | ID of the sealed bid auction problem.

Harsanyi’s approach on the other hand leads
to the solution concept of Bayes–Nash equilibrium
for games with incomplete information, based on the
assumption that players share a common prior, which
in this case requires those players disclose, inter alia,
their true beliefs about the other player’s valuation.12

Thus, Daphne’s probabilistic assessment of Apollo’s
valuation and Apollo’s probabilistic assessment of
Daphne’s valuation would be common knowledge.
Only under this assumption it is possible to compute
the solution. See also Rothkopf for a related discussion
concerning the role of game theory in auctions.60 The
Rios, Rios, and Banks approach38,39 seems to be more
realistic than Harsanyi’s. Rios, Rios, and Banks have
described a Bayesian approach to adversarial risk
analysis problems and modified influence diagrams
to represent these situations. They have illustrated it
with applications in the context of terrorism, with
a sketch of the Defend–Attack model, and bidding
in price-sealed auctions. They have focused on two-
person games, but the ideas directly extend to harder
and more realistic problems as well as to n-person
games. ARA is a new branch of collaborative statistics.
Another paper by Banks and Harris37 contend that
the classical game theory focuses upon a single game,
but in many situations such as counterterrorism, it is
appropriate to plan for a repeated play as Aumann
claims.19 The game problems are numerous and the
applications are important. The authors, Rios, Rios,
and Banks believe that the Bayesian perspective has
important contributions to make in this arena, and
that their formulation is more realistic than the
traditional Nash equilibrium analysis in Operations
Research or the ad hoc decisions that are commonly
made in practice by federal agencies and corporate
executives.

AN ALTERNATIVE MODEL:
SAHINOGLU’S SECURITY METER
(RISK-O-METER) FOR
GAME-THEORETIC APPLICATIONS TO
ASSESS AND MANAGE RISK BY MIXED
STRATEGY USING NEUMANN AND
NASH EQUILIBRIA

Neumann’s Mixed Strategy Solutions to
Risk-O-Meter (RoM) Assessment and
Management Algorithm
In conventional qualitative risk analyses, assets can
be classified on a scale of crucial-critical or very sig-
nificant, significant, or not significant. Vulnerabilities
and associated threats can be rated on a scale of
highly likely, likely, unlikely, or highly unlikely. On
the subject of countermeasures and risk mitigation, the
qualitative approach is from strong (high) to accept-
able (medium) and unacceptable (low). At an Air
Force Base gate where to the principal author once
commuted, the billboard indicated protection levels:
ALPHA or BRAVO or CHARLIE or DELTA, from
the least severe to the most (analogous to green, yel-
low, orange, and red depicting threat levels in the civil-
ian sector such as airports). Unfortunately, one does
not know how to numerically differentiate today’s risk
from yesterday’s. If there was a numerical value, such
as 90% security, one could tell just how secure we
were thought to be, similar to the way one differenti-
ated for temperature (Fahrenheit) readings. The same
concept applies to the risk accrued for one’s computer
or a hospital’s patient-centered healthcare system. To
quantify and manage risk, the RoM tool based on a
game-theoretic algorithm will be explained by citing
examples.29 The RoM method has been theoretically
validated by Sahinoglu, Yuan, and Banks32 through
applying MAPLE software and through digital simu-
lation as well.29,30,61 This automated risk assessment
and management algorithm provides a quantitatively
strong alternative to the current mostly qualitative
and subjective models. The model is explained below
in four separate subsections for clarity.

D W A D

Daphne’s bidding decision problem Apollo’s bidding decision problem

W A

uD
nD uA nA
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FIGURE 3 | Auction analysis from Daphne’s and Apollo’s bidding perspectives.

© 2012 Wiley Per iodica ls, Inc.



WIREs Computational Statistics Game-theoretic computing in risk analysis

Utility costConstants:

Probabilistic inputs:
Vulnerability Threat

Security meter 
probability model

Lack of countermeasure

Output:

Residual risk and expected 
maximum cost to avoid riskCriticality

FIGURE 4 | Risk-O-Meter Model of probabilistic, deterministic inputs, and calculated outputs.

Probabilistic Inputs
The suggested vulnerability values vary between 0.0
and 1.0 (0 to 100%), adding up to one as cited in
Figures 4 and 5. In a probabilistic sample space of fea-
sible outcomes of the random variable of vulnerability
or weakness, the sum of probabilities should add up
to 1. This is like the probabilities of the faces of a die,
such as 1–6, totaling to one. If a cited vulnerability is
not exploited in reality, then it cannot be included in
the model or simulation. Vulnerability has from one
to several threats. A threat is defined as the probability
of the exploitation of vulnerability within a specific
time frame. Each threat has a countermeasure (CM)
that ranges between 0 and 1 (with respect to the first
law of probability) whose complement gives the lack
of countermeasure (LCM). The binary CM and LCM
values should add up to one, keeping in mind the sec-
ond law of probability. The security risk analyst can
define a network connectivity (v1) as a vulnerability
in which a threat (t11), such as virus, or a hacker (t12),
could result in the destruction of software assets with-
out countermeasures such as an antivirus (CM111) or
a firewall (CM121), respectively.29,30

Deterministic Inputs
System criticality, a constant that indicates how crit-
ical or disruptive or consequential that a system is
in the consequence of entire loss, is taken to be a
single value ranging from 0.0 to 1.0 (0 to 100%) (see
Figure 4). Criticality is low if residual risk is of little or
no significance, such as a malfunctioning replaceable

LCM (V1∗T1∗LCM)

(V1∗T2∗LCM)

(V2∗T1∗LCM)

(V2∗T2∗LCM)

(V2∗T3∗LCM)

Output: Total residual risk
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V1

V2

T2
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T2
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LCM

LCM

LCM

CM

CM

CM

CM

CM
+

FIGURE 5 | General purpose tree diagram (V-branches, T-twigs,
LCM-limbs) for the RoM model.

office printer. In the case of a nuclear power plant,
or a patient undergoing a significant life and death
surgery at a hospital, criticality would be close to a
100%, because RoS, Risk of Service has vital safety
ramifications for irreplaceable lives and millions of
dollars or more. Capital (investment or utility) cost is
the total expected asset loss in monetary units (dol-
lars, etc.) for a particular system if it is destroyed
completely, and can no longer be utilized, excluding
the other costs had the system continued to generate
added value for the system. If there is an economic
ripple or shadow-cost effect, a multiplier other than a
default of unity (1.0) is needed.

Probabilistic Tree Diagram
Given that a simple sample system or component
has two or more outcomes for each risk factor,
vulnerability, threat, and countermeasure, the fol-
lowing probabilistic framework holds for the sums∑

vi = 1 and
∑

tij = 1 for each i, and the sum of
LCM + CM = 1 for each ij, within the tree diagram
structure in Figure 5. Using the probabilistic inputs,
we calculate the residual risk = vulnerability × threat
× lack of countermeasure. We can calculate the resid-
ual risks for all vulnerabilities with threats and LCMs,
as well as the total residual risk. That is, if we add all
the residual risks due to the lack of countermeasures
as in Figure 5, we can find the overall residual risk.
We multiply the criticality factor with the residual
risk to calculate the final risk. Then we apply the cap-
ital investment cost to the final risk to determine the
expected cost of loss (ECL), which budgets for avoid-
ing (before the attack) or repairing (after the attack)
the entire risk where ECL ($) = final risk × capital
cost.

Algorithmic Calculations
Figure 4 leads to a sample probabilistic tree diagram
in Figure 5, which illustrates the calculations. For
example, out of 100 malware attempts, the number
of penetrating attacks not prevented will give the
estimate of the percentage of LCM. One can then
trace the root cause of the threat retrospectively in the
tree diagram. In a cyber-security theme example: (1) a
hacking network attack as a threat occurs; (2) the
firewall software does not detect it; and (3) as a
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result of this attack, whose root threat is known,
the network as vulnerability is compromised. This
example illustrates the line of attack on the tree
diagram of Figure 5. Out of 100 such cyberattacks
that maliciously harmed the target operation in
any manner, how many of them were not counter-
measured by, e.g., installed antivirus software or
firewall? Out of those not prevented by a certain
countermeasure (CM), how many of them were caused
by threat 1 or 2, targeted for a particular vulnerability
1 or 2, etc.? Therefore, calculate for each limb in
Figure 5, residual risk (RR) and sum the RRs for the
total residual risk, TRR. Following the initial risk
assessment, one proceeds with the risk management
stage akin to Price War example in Section 2
to compute the game-theoretic linear programming
solution vector CMij to mitigate risk from 26 to 10%.
See Tables 7 and 8, using input in Table 6.

Expected Outcomes
Refer Table 7 for the risk management results regard-
ing surveyed input data of Table 6.30 After running
the RoM through the software developed by the prin-
cipal author, one obtains a break-even cost of $5.67
accrued per 1% countermeasure improvement. This
is the result after the countermeasures are taken to
bring the undesirable security risk (e.g., 26.04%) to

a tolerable level (e.g., 10%). The average break-even
cost C per 1% must be calculated to procure per-
sonnel, hardware, and software costs. On the positive
side, the expected cost of loss (ECL) will decrease with
a gain of �ECL while the software and hardware etc.
related CM improvements are added on. The break-
even point is where the benefits and costs are equal,
correctly guiding the security manager to follow up on
corrective actions. The Base Server of the example in
Table 7 (left half of Table 8) shows the organizational
policy of mitigating the RR from 26.04% down to
10% (≤10%) in the Improved Server. Then for each
improvement action, such as increasing from 70 to
100% for v1t1 branch etc., 30 × $5.67 = $170.1 is
spent. The total minimal change of 90.52% × $5.6715
per 1% = $513.38 improvement cost, and �ECL
= $833.38 (base server) − $320 (improved server)
= $513.38 for a diminished RR are now identical.
Tables 7 and 8 show how the RoM is used to manage
risk with a game-theoretic algorithm of threats versus
countermeasures as two opposing actions. See Delta
ECL of $513.38 at the bottom of Tables 7 and 8. If
the user can find a provider to improve their PC or
system for less than $5.67 per 1%, they will accrue
a profit. Note, Table 7 (JAVA) or Table 8 (EXCEL)
were built from a related security survey of a server
at a U.S. University’s Computer Center as illustrated

TABLE 6 Sample Security Meter Input Probability Chart for a Local Server at a University Center30

Vulnerability Threat Countermeasure

V1 = 0.35
(Internal Security Breach)

T11 = 0.48
(Internal Abuse of Network Access)

CM11 = 0.70
(Security Awareness Training)
LCM11 = 0.30 by Subtraction

T12 = 0.16
(System Penetration)

CM12 = 0.42 (Smart Cards)
LCM12 = 0.58 by Subtraction

T13 = 0.32
(Denial of Service)

CM13 = 0.97 (Firewalls)
LCM13 = 0.03 by Subtraction

T14 = 0.04
(Financial / Telecom Fraud)

CM14 = 0.80 (Security Audit)
LCM14 = 0.20 by Subtraction

V2 = 0.26
(External Security Breach)

T21 = 0.22
(Abuse of Wireless Network and Web
Site Defacement)

CM21 = 0.35
(Public Key Infrastructure)
LCM21 = 0.65 by Subtraction

T22 = 0.02
(Sabotage)

CM22 = 0.35 (Intrusion Prevention)
LCM22 = 0.65 by Subtraction

T23 = 0.76
(Virus)

CM23 = 0.96 (Anti -Virus)
LCM23 = 0.04 by Subtraction

V3 = 0.39
(Both Internal and External Breach)

T31 = 0.32
(Unauthorized Info Access)

CM31 = 0.72 (Intrusion Detection)
LCM31 = 0.28 by Subtraction

T32 = 0.59
(Malicious Code)

CM32 = 0.70 (Server Access)
LCM32 = 0.30 by Subtraction

T33 = 0.09 (Theft of Proprietary
Information)

CM33 = 0.46 (Encrypted Files)
LCM33 = 0.54 by Subtraction
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TABLE 7 An Example of a Game-Theoretic Cost-Optimal Risk Management Analysis Using JAVA Coding

in Table 6.30 Consequently, optimal countermeasures
are generated using a game-theoretic computational
algorithm, RoM, to optimize mitigation as illustrated
under the Change column. The algorithm brings sig-
nificant advantages to information warfare22,23,30,61

on how to optimize the countermeasures (CM) in
an offense versus defense setting in national cyber-
security theme.62,63

Clarifications for RoM Results in Tables 6–10
for the Production Server at a University Center
Using the input chart of Table 6 and the results of
Tables 7 and 8 and to improve the base risk by miti-
gating from 26 to 10%, we implement the prioritized
and recommended actions from the Advice column
as follow: (1) Increase the CM capacity for the vul-
nerability of Internal Security Breach and its threat
Internal Abuse of Network Access from the current
70 to 100%. (2) Increase the CM capacity for the vul-
nerability of External Security Breach and its threat
Virus from the current 96 to 100%. (3) Increase the
CM capacity for the vulnerability of Both Internal
and External Breach and its threat Unauthorized Info
Access from the current 72 to 98.54%. (4) Increase the
CM capacity for the vulnerability of Both Internal and
External Breach and its threat Malicious Code from

the current 70 to 99.99%. In pursuing these actions,
as in Table 7, a Total Final Cost of $510 is dispensed
(<$513.38 as advised) each within the limits of opti-
mal costs annotated, staying below the break-even cost
of $5.67 per every %CM improvement. The next man-
agement step may proceed with seeking optimization
to a next desirable percentage once these CM services
are provided, such as mitigating to 5 from 10% if the
budget exists. One can also see under Table 8’s Game
column 11, the alternative CM values were obtained
through a new LP optimal solution in Table 9 where
the improvement constraint, i.e., ≥column 3 is liber-
ated or disabled. Namely, the CM constraints earlier
in column 5 for the sought optimal vector were bound
to be greater than or equal (≥) to those previously
enabled in column 3 for improvement. The new solu-
tion CM vector as in column 11 all may not be ≥ those
of column 3 as one can see in Table 8’s Change col-
umn 10 that may contain a negative value (red). For
this alternative in Table 9, to provide the same bene-
fits, one has to experience a change of 310.9% at the
bottom of column 10 compared to 90.5% of column 7
in Table 8. Then, for a fixed cost of recovery, one has
to pay at least three times. However, columns 8 and
13 of Table 8 yield the identical ECL (expected cost
of loss) due to differing break-even costs. Therefore,
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TABLE 8 An Example of Game-Theoretic Cost-Optimal Risk Management (Mixed Strategy using EXCEL)

TABLE 9 LP Solution of Example of Tables 6–8 When ≥ Constraints not Placed on CMij in Column 3 of Table 8

what’s in Change column of Table 7 (JAVA) that
is identical to column 7 of Table 8 (EXCEL) is the
most optimal solution. Column 10 is the difference
vector between column 11 (an alternative mixed strat-
egy solution using Table 9 LP solution when the
greater than or equal to column 3’s countermeasures

are omitted for free ride solution) and column 3
of CMij also in Table 10 through Table 6. Defense
(user) picks the smallest column-wise, while Offense
(attacker) picks the largest row-wise risk. This is
how the Maximin = Minimax works as in Table 10
illustrating the diagonal loss matrix.
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TABLE 10 Diagonal Loss Matrix of Table 8 (Columns 1–3, 5) of Neumann Mixed Strategy and β(Column 12) of Nash Mixed Strategy

CM11 =
0.70, β1 =

0.01652

CM12 =
0.42, β2 =

0.04962

CM13 =
0.97, β3 =

0.02481

CM14 =
0.80, β4 =

0.19849

CM21 =
0.35, β5 =

0.04859

CM22 =
0.35, β6 =
0.053439

CM23 =
0.96, β7 =

0.01406

CM31 =
0.72, β8 =

0.02227

CM32 =
0.70, β9 =

0.01208

CM33 =
0.46, β10 =

0.07917

V1 × T11 =
0.35 × 0.48

0.168

V1 × T12 =
0.35 × 0.16

0.056

V1 × T13 =
0.35 × 0.32

0.112

V1 × T14 =
0.35 × 0.04

0.014

V2 × T21 =
0.26 × 0.22

0.0572

V2 × T22 =
0.26 × 0.02

0.0052
Minimax

V2 × T23 =
0.26 × 0.76

0.1976

V3 × T31 =
0.39 × 0.32

0.1248

V3 × T32 =
0.39 × 0.59

0.2301
Maximin

V3 × T33 =
0.39 × 0.09

0.0351

Other Interdisciplinary Applications of RoM
The RoM’s risk assessor and manager expert system
is capable of implementing this algorithm into diverse
themes such as62–68:

1. Computer and Network Security Risk-O-Meter

2. Computer and Network (including Social
Networks) Privacy/Security Risk-O-Meter

3. Ecological Risk-O-Meter

4. Electronic-Voting Risk-O-Meter

5. Business Contract Risk-O-Meter

6. Campus Safety and Security Risk-O-Meter

7. Department of Public Health HIPAA
(Privacy/Security) Risk-O-Meter

8. Hospital-Based Non-Ambulatory Patient-
Centered Healthcare Risk-O-Meter

9. National and State Cyber-Security
Risk-O-Meter

10. Federal Cyber-Security Risk-O-Meter

11. Mining Safety and Security Risk-O-Meter

12. Off-Shore Oil-Spill Wireless Sensory Network
(WSN) Risk-O-Meter

13. Usability Risk-O-Meter

14. Cloud Risk-O-Meter

15. Airport Service Risk-O-Meter.

For the sake of a popular example, let us present
a case in regards to the item 2 (Social Networks
Privacy/Security Risk-O-Meter) from the listing above,
where a number of real people (not simulated) were
interviewed and the results were discussed.67 With
the advent and unprecedented popularity of the now
ubiquitous social networking sites such as Google+,
Facebook, MySpace, and Twitter etc. in the personal
sphere and others such as LinkedIn in business circles,
undesirable security, and privacy risk issues have come
to the forefront as a result of this extraordinary
rapid growth. The most salient issues are mainly
lack of trustworthiness; namely, those of security and
privacy.

One can address these issues by employing a
quantitative approach to assess security and privacy
risks for social networks already under pressure by
users and policymakers for breaches in both quality
and sustainability. One can also demonstrate, using
a cost-optimal game-theoretic solution using RoM
algorithmic tool, how to assess and manage risk.
The applicability of this research to diverse fields
from security to privacy and health care, and eco-
risk or business is an additional asset. See section
on Social Networks Privacy/Security Risk-O-Meter
Example on the social networks’ privacy/security
theme along with both Neumann and Nash mixed
strategy solutions.
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Application of Nash Equilibrium Mixed
Strategy Solution to Risk-O-Meter
Assessment and Management
University Server’s Security Risk-O-Meter
Example
In the preceding university server’s security example of
Tables 6–9 applying RoM, we had a strictly diagonal
loss (opposite to utility or payoff) matrix. The
probabilistic action set is not discrete but continuous
and differentiable, and all lie between 0 and 1. Note
CMij in the CM and LCM column in Tables 7, 8, and
10. Let us start with differentiating diagonal matrix’s
expected loss in Table 10, such as in Section on Games
with Multiple Nash Equilibria (Terrorist Game: Bold
Strategy Can Result in Domination), to obtain the NE
solution vector. See Eq. (3–8).

�C = (1 − 0.168)α1β1 + (1 − 0.056)α2β2

+ (1 − 0.112)α3β3 + (1 − 0.014)α4β4

+ (1 − 0.0572)α5β5 + (1 − 0.0052)α6β6

+ (1 − 0.1976)α7β7 + (1 − 0.1248)α8β8

+ (1 − 0.2301)α9β9 + (1 − 0.0351)

× ((1 − α1 − α2 − α3 − α4 − α5 − α6

− α7 − α8 − α9)(1 − β1 − β2 − β3 − β4

− β5 − β6 − β7 − β8 − β9)) (3)

Then, the Nash equilibrium (αβ)T vector can
be obtained by solving the simultaneous differentiable
equations ∂�C

∂α
and ∂�C

∂β
for α and β vectors that are

continuous variables defined in (0,1).57,64,68

Taking the derivatives and equating to zero:

∂�C

∂α1
= 0.168β1 − 0.0351

(
1 −

9∑
i=1

βi

)
= 0 (4)

∂�C

∂α2
= 0.056β2 − 0.0351

(
1 −

9∑
i=1

βi

)
= 0 (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂�C

∂α9
= 0.2301β9 − 0.0351

(
1 −

9∑
i=1

βi

)
= 0 (6)

Therefore, the resultant equations for the Nash
equilibrium’s differential equations are given as
follows:

0.168β1 = 0.056β2 → β1 = 0.333β2

0.056β2 = 0.112β3 → β3 = 0.500β2

0.112β3 = 0.014β4 → β4 = 4β2

0.014β4 = 0.0572β5 → β5 = 0.9792075β2

0.0572β5 = 0.0052β6 → β6 = 10.769229β2

0.0052β6 = 0.1976β7 → β7 = 0.283403β2

0.1976β7 = 0.1248β8 → β8 = 0.448721β2

0.1248β8 = 0.2301β9 → β9 = 0.243374β2

0.2301β9 = 0.0351β10 → β10 = 1.595454β2 (7)

Also, β2 = 1.0β2 (identity). Now add
∑

βi =
20.1524 β2 = 1.000 → β2 = 0.049622.

Final Nash equilibrium solution vector for βi

(substituting in Eq. (7) as tabulated in Table 10 is as
follows:

β1 = 0.0165241

β2 = 0.0496218

β3 = 0.0248109

β4 = 0.1984872

β5 = 0.0485900

β6 = 0.5343885

β7 = 0.0140629

β8 = 0.0222663

β9 = 0.0120766

β10 = 0.0791693 (8)

Now add
∑

βi = 1.000, which checks to unity.
Also αi = βi, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Therefore, there is no need to solve ∂�C
∂α

.
These β multipliers of Eq. (7) are displayed

under Beta M’lier in column 9 of Table 8, where
β2 = 0.049622. The final Nash equilibrium’s Beta
Vector is displayed in column 12 of Table 8, as well
as Table 10’s top row, summing to β total = 1.00.
If this solution vector is unconstrained and used as
is, the residual risk will fall to 17.87% as shown at
the bottom of column 12 from an original 26.04% in
column 4. However, some of these NE solution vector
values are infeasible since they exceed a probability
of 1.00, such as in the case of β6 = 0.534, which
actually means CM22 = 0.534 × 6.43 (countermea-
sures summed total CMij at the bottom of column 4
in Table 8) = 3.43 > 1.0. This cannot to be allowed
since CMij probabilities cannot exceed 1.0. Therefore,
the NE solution vector is not valid. We review a diago-
nal matrix case as in Table 11. NE solution is feasible,
but engineering-wise not realistic.
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TABLE 11 Social Network Privacy/Security Risk Example Using Cost-Optimal Risk Analysis with RoM

Social Networks Privacy/Security Risk-o-Meter
Example
In another example, see Table 11 for the application
of NE solutions on a new RoM scenario. In a new
example seeking NE solution vector for the RoM
tableau in Table 11 for a different problem from
Ref 67, the RoM’s CMij solution vector is obtained
as follows with respect to Table 11. Solving the
differential equations for the NE vector through Eqs
(9) and (10) as we did in the previous example, the
NE mixed strategy solution vector is

0.1078β1 = 0.1862β2 → β1 = 1.727β2

0.1862β2 = 0.076β3 → β3 = 2.45β2

0.076β3 = 0.117β4 → β4 = 1.591β2

0.117β4 = 0.09β5 → β5 = 2.069β2

0.09β5 = 0.093β6 → β6 = 2.002β2

0.093β6 = 0.1176β7 → β7 = 1.582β2

0.1176β7 = 0.0924β8 → β8 = 2.015β2 (9)

Also, β2 = 1.0β2 (identity). Now add
∑

βi =
14.43 β2 = 1.000 → β2 = 0.069278.

Final Nash equilibrium mixed strategy solution
vector for βi:

β1 = 0.119644 → β1 x 5.06 = 0.61 = CM11

β2 = 0.069278 → β2 x 5.06 = 0.35 = CM12

β3 = 0.169732 → β3 x 5.06 = 0.86 = CM13

β4 = 0.110222 → β4 x 5.06 = 0.56 = CM21

β5 = 0.143337 → β5 x 5.06 = 0.73 = CM22

β6 = 0.138695 → β6 x 5.06 = 0.70 = CM23

β7 = 0.109598 → β7 x 5.06 = 0.55 = CM31

β8 = 0.139596 → β8 x 5.06 = 0.71 = CM32 (10)

Now add
∑

βi = 1.000 which checks. Also βi =
αi, for i = 1, 2, 3, 4, 5, 6, 7, 8. Also αi = βi, for i = j.

CMij sum = 0.53 + 0.85 + 0.69 + 0.63 + 0.73
+ 0.6 + 0.5 + 0.53 = 5.06, by adding column 3 (CM
and LCM) in Table 11.

When calculated, although feasible, NE vector
worsened risk level from 34.5 to 37.5% (while a
mitigation drop was expected), i.e., when these NE
vector values are implemented as we did in Table 8.
From Table 11, TRR = 1 − ∑

i,j,k ViTjCMijk = 1 −
0.493506× [0.218599 × 0.61 + 0.379831 × 0.35 +
0.401570 × 0.86] − 0.298701 × [0.385572 × 0.56 +
0.298507 × 0.73 + 0.315920 × 0.70] − 0.207792 ×
[0.558389 × 0.55 + 0.441611 × 0.71] = 1 − 0.0653
+ 0.0651 + 0.1702 + 0.0642 + 0.0647 + 0.0662 +
0.0644 + 0.0646 = 1 − 0.625 = 0.375. Although NE
solution computationally worked, it is not practical
because new CMij do not mitigate risk!
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Clarification of Risk Assessment and
Management Algorithm (RoM) Using
Figure 6 and Table 11
To mitigate a certain survey taker’s (representing
an undisclosed identity with a median risk value
of 34.5% amidst nine graduate students randomly
selected from social network users at an interna-
tional University, METU, Ankara, Turkey) social
network privacy/security risk from 34.5 to 24%, fol-
lowing countermeasures (CM) were guided by the
RoM as follows67: (1) Increase the CM capacity for
the threat of E-Mail hijacking in the vulnerability of
Correspondence from 85 to 100% for an improve-
ment of 15% by procuring goods or services for
$210.93. (2) Increase the CM capacity for the threat
of E-Commerce in the vulnerability of Correspon-
dence from 69.5 to 100% for an improvement of
30.50% by procuring goods or services for $428.84.
(3) Increase the CM capacity for the threat of Easily
Guessed Passwords in the vulnerability of Password
from 50 to 64.36% for an improvement of 14.36%
by procuring goods or services for $201.99.

A total cost of $841.76 is allocated to
mitigate the risk from 34.5 to 24% for cost-
optimal improvement yielding a Total Change of
59.86% as RoM results show in Table 11. She/he
can recursively continue to mitigate the present risk
of 24% (down from an initial 34.5%) to lower target
values such as 10% if she/he has a sufficient budget
remaining for further improvement. This is to say
that she/he (median survey taker) will implement the
above-clarified countermeasures by purchasing the
services needed to mitigate her/his privacy/security
risk from a high of 34.5% to a low of 24%.
She/he will do that by simply referring to the CM
questions as cited, and converting the negative (No)
responses to positives (Yes) by taking recommended
countermeasures. While doing so, she/he will optimize
her/his costs by following the optimal allocation plan
suggested by the RoM’s game-theoretical solutions,
which are Neumann mixed strategy. NE mixed
strategy solution did not generate an improvement
on 34.5%, conversely worsening to 37.5%. Utility or
asset of $8000 was assumed, see Figure 4.

CONCLUSIONS, DISCUSSIONS, AND
FUTURE RESEARCH

Although Game theory from its inception is almost
150 years old, it started gaining prevalence and world-
wide recognition around the end of the Second World
War when decisions regarding newly introduced
nuclear weapons meant possible life or death for

mankind. Game theory-related computing began first
in 1944 along with Dantzig’s breakthrough on simplex
method with Neumann and Morgenstern’s pioneering
book.3 Nash brought a reconciliatory flavor to Neu-
mann’s WW2 era findings within an economic context
in 1950.5 Since the advent of Internet connectivity in
1990s and the exponential rise of correspondence and
malicious malware without borders, game theory is
viewed as a tool for protecting ubiquitous Cybersys-
tems and Information Security against enemies and
adversaries, which operate both in rational and irra-
tional modes. It is anticipated that cyber-armies will
replace conventional forces with cyberspace command
needing more resources than warplanes or submarines
in the next decades. Scanning a history of 150 years,
this review delves into computationally intensive
methods to show why and how game-theoretic risk
analysis works from statistical, business, and engineer-
ing viewpoints to name a few. Major examples are
illustrated to highlight the significance of these meth-
ods, i.e., from Neumann’s two-way zero-sum to those
of mixed strategy, and moreover Nash equilibrium
while citing computational and theoretical difficulties
and solutions. An example of adversarial risk analysis
(ARA) by other scientists is also illustrated. Nowa-
days, game theory is not dichotomous as it used to
be, such as Neumann versus Nash methods, but mul-
tifaceted. The new game theoreticians, e.g., Aumann
and Banks19,38,39 are exploring critiques in search of
new techniques since the nature of players has changed
from rational to irrational, and erratic or terrorist.
Moreover, Sahinoglu’s Risk-o-Meter29,30,61 technique
is reviewed through pure and mixed strategy solutions
from Neumann and Nash Equilibria viewpoints. This
has led to a quantitative risk assessment and mitiga-
tion software tool, scalable and applicable into daily
practice for diversely popular disciplines.61–68

In summary, therefore, following an informa-
tive introduction to gaming and origins in Section
Introduction to Gaming and Historical Perspective
to Game Theory’s Origin, a technical background
with conceptual definitions supported by numerical
examples is presented in Section Intuitive Back-
ground—Concepts, Definitions, and Nomenclature
of Game Theory. In Section Random Probabilistic
Selection for Nash Mixed Strategy Equilibria—Vari-
ous Scenarios, more in-depth Nash nomenclature and
solutions are studied citing scenarios from the liter-
ature. Certain ARA models are reviewed in Section
Adversarial Risk Analysis (ARA) Models with cer-
tain illustrations from their proponents. Regarding
an alternative probabilistic risk assessment and cost-
optimal game-theoretic management algorithm, i.e.,
Risk-o-Meter (RoM); various examples of Neumann’s
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FIGURE 6 | An example for social network privacy/security risk-o-meter tree diagram using RoM.

and Nash equilibrium solutions in Sections
Neumann’s Mixed Strategy Solutions to Risk-O-Meter
(RoM) Assessment and Management Algorithm and
Application of Nash Equilibrium Mixed Strategy Solu-
tion to Risk-O-Meter Assessment and Management,
with respect to engineering realities and probabilistic

laws are also reviewed. Nash solutions are shown
to demonstrate a complete consensus between the
elements of the defense (good) and offense (hos-
tile). Whatever one player challenges, the rival player
concurs with, leading to a complete agreement status
in effect minimizing the damage or maximizes the
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gain from whatever angle one views it. This is evident
from the identical Eqs 4–6, 9–10 in Section Alternative
Model: Sahinoglu’s Security Meter (Risk-O-Meter) for
Game-Theoretic Applications to Assess and Manage
Risk By mixed Strategy Using Neumann and Nash
Equilibria. However, the reality is quite different from
this idealistic scenario, since terrorists and defenders
do not simply concur to be kind out of courtesy.
This review displays only a non-exhaustive selection
of predominant games, with recent alternative game
solutions. There may be many solution genres of game
theory as there are problems. Game-theoretic com-
puting topics in risk analysis have recently become

important elements of course syllabi taught at cyber-
security degree programs such as in the Cybersystems
and Information Security (CSIS) graduate degree pro-
gram at Auburn University Montgomery (www.aum.
edu/csis).69 The future of game-theoretic computing
lies in not only deriving smart novel models but also
articulating them for the layman or potential indus-
trial user or risk analyst, by demonstrating how to
apply them in an algorithmic order through crunching
real-life data and obtaining meaningful solutions to
interpret. Scope of future research entails overriding
some of the limitations of the status-quo game-
theoretic practices, which include idealized scenarios
[21p. 7; 24p. 12].
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