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Abstract—Software stopping rules are tools to effectively
minimize the time and cost involved in software testing. The
algorithms serve to guide the testing process such that if a certain
level of branch or fault (or failure) coverage is obtained without
the expectation of further significant coverage, then the testing
strategy can be stopped or changed to accommodate further, more
advanced testing strategies. By combining cost analysis with a
variety of stopping-rule algorithms, a comparison can be made
to determine an optimally cost-effective stopping point. A novel
cost-effective stopping rule using empirical Bayesian principles for
a nonhomogeneous Poisson counting process compounded with
logarithmic-series distribution (LSD) is derived and satisfactorily
applied to digital software testing and verification. It is assumed
that the software failures or branches covered, whichever the
case may be, clustered at the application of a given test-case are
positively correlated, i.e., contagious, implying that the occurrence
of one software failure (or coverage of a branch) positively influ-
ences the occurrence of the next. This phenomenon of clustering
of software failures or branch coverage is often observed in
software testing practice. The r.v.wi of the failure-clump size
of the interval is assumed to have LSD( ) and justified on the
data sets by employing a chi-square goodness of fit testing while
the distribution of the number of test cases is Poisson( ). Then,
the distribution of the total number of observed failures, or
similarly covered branches, X is a compound Poisson LSD, i.e.,
negative binomial distribution, given that a certain mathematical
identity holds. For each checkpoint in time, either the software
satisfies a desired reliability attached to an economic criterion,
or else the software testing is allowed to continue. By using a
one-step-look-ahead formula derived for the model, the proposed
stopping rule is applied to five test case-based data sets acquired
by testing embedded chips through the complex VHDL models.
Further, multistrategy testing is conducted to show its superiority
to single-stage testing. Results are satisfactorily interpreted from
a practitioner’s viewpoint as an innovative alternative to the
ubiquitous test-it-to-death approach, which is known to waste
billions of test cases in a tedious process of finding more bugs.
Moreover, the proposed dynamic stopping-rule algorithm can
validly be employed as an alternative paradigm to the existing
on-line statistical process control methods static in nature for
the manufacturing industry, provided that underlying statistical
assumptions hold. A detailed comparative literature survey of
stopping-rule methods is also included in terms of pros and cons,
and cost effectiveness.

Index Terms—Bernoulli process, cluster effect, compound
Poisson process, cost effective, effort domain, empirical Bayesian
analysis, failure or branch coverage, logarithmic-series distri-
bution (LSD), negative binomial distribution (NBD), positive
autocorrelation, stopping rule.
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I. INTRODUCTION AND MOTIVATION

T HIS PAPER describes a statistical model to devise a stop-
ping criterion for random testing in VHDL based hard-

ware verification. The method is based on statistical estimation
of branching coverage and will flag the stopping criteria to halt
the verification process or to switch to a different verification
strategy. The paper gives some results on some VHDL descrip-
tions. This paper builds upon the statistical behavior of failure
(or fault) or branch coverage described in Section II. Applying
empirical Bayesian and other statistical methods to problems in
hardware verification, such as better stopping rules, should be
a fruitful area of research where improvements in the state of
the art would be very valuable. Technically, the general con-
cept is questionable. However, the stopping-rule idea is gener-
ally accepted to be more rational than having no value-engi-
neering judgment to stop testing, as often dictated by a com-
mercially tight time-to-market approach [41]. There is actually
a large number of research and practical results available in sta-
tistically analyzing hardware verification processes. All major
microprocessor companies heavily rely on such concepts. Note,
faults and failures are taken to be synonymous here for conve-
nience.

When designing a VLSI system in the behavioral level, one
of the most important steps to be taken is verifying its func-
tionality before it is released to the logic/PD design phase. It is
widely believed that the quality of a behavioral model is cor-
related to the experienced branch or fault coverage during its
verification process [17]–[19], [31], [51]. However, measuring
coverage is just a small part of ensuring that a behavioral model
meets the desired quality goal. A more important question is
how to increase the coverage during verification to a certain
level with a given time-to-market constraint. Current methods
use brute force where billions of test cases were applied without
knowing the effectiveness of the techniques used to generate
these test cases [17]–[19], [32], [46]. One may consider behav-
ioral models as oracles in industries to test against when the
final chip is produced. In this work, in experimental sets in-
volved, branch coverage (in five data sets of DR1 to DR5) is
used as a measure for the quality of verifying and testing behav-
ioral models. Minimum effort for achieving a given quality level
can be realized by using the above proposed empirical Bayesian
stopping rule. The stopping rule guides the process to switch to
a different testing strategy using different types of patterns, i.e.,
random versus functional, or using different set of parameters to
generate patterns or test cases or test vectors when the current
strategy is expected not to increase the coverage. This leads to
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the practice of mixed-strategy testing. One can demonstrate the
use of the stopping-rule algorithm on complex VHDL models.
One has observed that switching phases at certain points guided
by the stopping rule would yield to the same or even better cov-
erage with less number of testing patterns. This method is an
innovative alternative to help save millions of test-patterns and
hence reduce cost in the colossal testing process of embedded
chips versus the conventionally used “test-it-to-death” exhaus-
tive-testing approach which wastes billions of vectors hoping
to find more bugs in fault testing or cover more branches, all
leading to a tedious process.

There occur many physical events according to the indepen-
dent Poisson process, and, for each of these Poisson events, one
or more other events can occur. This is identified as over-dis-
persion in many life-sciences oriented textbooks, to cover the
total number of certain bacteria or algae clustered on individual
leaves in a water pond to exemplify [3], [4]. If an interruption
during the testing of a software program is assumed to be due to
one or more software failures (or branch coverage) in a clump,
and if also the distribution of the total number of interruptions or
test cases is Poisson; then the distribution of total number of ex-
perienced failures, or covered branches is a compound Poisson
(CP) [6], [8]–[15]. The empirical Bayesian stopping rule, there-
fore, uses the mathematical principles of a Poisson counting
process as applied to the count of test cases, with a logarithmic-
series distribution (LSD) applied to the cluster size of software
failures or branch coverage generated by each test-case. It satis-
factorily applies to a time-continuous, compounded and nonho-
mogenous Poisson process, as well as to a time-independent ef-
fort (or test-case) based testing such as in a sequentially discrete
Bernoulli process. Namely, Poisson process is a time-param-
eter version of the counting process for Bernoulli trials ([20], p.
72). It is imperative to recall that often used Binomial processes
are the sum of identical Bernoulli distributed random variables.
However, those Bernoulli random variables at each test-case
epoch are nonidentical with unequal “arrival” success probabil-
ities as earlier studied by Sahinoglu in a 1990 publication [9].
The proposed model assumes randomization of test cases in the
spirit of independently incremented Poisson counting process,
since the coverage sizes do not necessarily follow a definite
trend unless test cases are ordered in a merit order. This is a
practice, which is impossible to attain perfectly prior to actual
experimentation. Some sources claim that the independent-in-
crements Poisson arrival model is applicable for the first “sur-
prise” execution against a test suite. On second and subsequent
executions, the “arrival” (or discovery) of faults (or branches)
is no longer random unless the software development process
is chaotic or parallel-distributed. Evidently, the applicability of
such an independent-increments counting process and hence
the proposed stopping rule varies with the maturity of the soft-
ware testing activity being developed. This is why the regres-
sion testing techniques to observe for the said maturity is of rel-
evance here in terms of mainstream software engineering [42].
Also, some authors support the concept of probability distribu-
tion function, : interruption correlation function, for the oc-
currence of interruptions, a concept which is rather hazy and
nebular [33]. First, the total number of observations should al-
ways be known in advance to model the probability of interrup-

tions, which testers are unable to master. Therefore, is an
unrealistic guesswork and it also clearly varies from one data to
another, strictly not to be generalized. It is therefore more ra-
tional to randomize statistically the interruption activity, which
is so much more natural as unprecedented test cases may act sur-
prisingly different at random epochs. The randomization phe-
nomenon is also in the spirit of a Poisson process with indepen-
dent increments on which MESAT tool is structured. The unpre-
dictability factor of fault-arrival or branch-coverage is therefore
best addressed by a nonhomogenous Poisson process whose rate
of arrival is adjusted, in this case diminished, with the advance
of time or number of test cases. This nonstationarity of a Poisson
process takes care of the no-longer independent Poisson arrival
times, a phenomenon best displayed by the NHPP ([20], pp.
94–101).

When a new computer software package is written, compiled
and all obvious software failures are removed for customary
input sets; then, a testing program is usually initiated to elimi-
nate the remaining failures. The common procedure is to use the
software package on a set of problems, and whenever the testing
is interrupted because of one or more programming failures, the
codes are corrected, the software re-compiled, and computation
is re-started. This type of testing can continue for several time
units (hours, days, or weeks, etc.) with the number of failures
per unit time lessening. The same is true for instance when dis-
cretely applied test cases replace test weeks and branch coverage
records replace those of failure coverage. Finally, one reaches a
point of optimal economic return in time or effort when testing
is stopped and the software released. However, one is never cer-
tain that all software faults due to failures have been removed, or
similarly all branches have been covered. Although there may
still be a small number of failures remaining in the software,
the chances of finding them within a reasonable time may be so
small that it is not economically feasible to continue testing [6],
[21]. The objective is to find a cost-effective stopping rule to
terminate testing. One can add the dimension of a preconceived
confidence-level, , to ensure minimal coverage re-
liability.

Stopping-rule problem has been studied extensively by
statisticians and engineers [2], [7], [34], [37]–[40], [44]. In
this research paper, however, a cost-effective stopping rule is
presented with respect to a popularly used one-step-look-ahead
economic criterion when an alternative underlying pdf is as-
sumed for the clump size for the failures or branches observed.
The total number of discovered failures or covered branches
is the Poisson counting process compounded with the LSD
at each Poisson arrival. That is, the number of incidents over
time is distributed as Poisson, whereas the number of failures
that occur as a clump at each interruption epoch or incident is
distributed according to a discrete LSD. The failures within a
clump are positively correlated with each other. This phenom-
enon is represented by a parameter in the LSD for
the clump size r.v. A Poisson distribution compounded by a
discrete LSD will be denoted as a PoissonLSD, namely a
negative binomial distribution (NBD) pending a certain math-
ematical identity as in (14) below. The algorithm is applied in
effort domain where test cases are applied for the five data sets
experimented on embedded chips [17]–[19], [41], [44].
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II. NOTATIONS, COMPOUND POISSON, AND EMPIRICAL

BAYES ESTIMATION

r.v. Random variable.
pdf Probability density function.
iid Independent and identically distributed.
CP Compound Poisson distribution.
CPSRM Compound Poisson software reliability

model.
JPL Jet Propulsion Laboratory.
LSD Logarithmic-series distribution.
EDA Exploratory data analysis.
MESAT Proposed stopping-rule java applet.
CL Confidence level, or a minimal percentage

of branches or failures to cover.
Poisson LSD Poisson distribution compounded by

LSD.
NBD Negative binomial distribution.

The r.v. for the number of Poisson events
until and including time “t”.
Total number of failures distributed w.r.t.
Poisson LSD until discrete time unit t.
The r.v. of failure clump size, distributed
w.r.t. LSD at each Poisson event i.
LSD parameter which denotes the positive
correlation. is a realization of the r.v. .

a Constant for the LSD r.v. of w.
k NBD parameter (calculated recursively at

each Poisson epoch).
Poisson rate or parameter where

holds.
Lower limit of .
Upper limit of .

cf. or Characteristic function of .
Range for LSD parameter, the correlation
coefficient: .

q Reciprocal of . When ,
no compounding phenomenon exists; the
process is then purely Poisson with .
As increases, the compounding or
over-dispersion effect also increases.

p Related parameter, . No com-
pounding or pure Poisson when .
Discrete negative-binomial conditional
probability distribution of X.
Prior distribution of the positive correla-
tion parameter.
Marginal distribution of X following the
Bayesian analysis.
Prior Beta distribution for LSD variable.
Positive shape and scale parameters of
Beta.
Posterior conditional distribution of
after updating for X: failure vector.
Discrete conditional probability distribu-
tion of X given .
Bayes estimator w.r.t. squared error loss
function. Expected value of the condi-
tional posterior r.v. .

Expected value of the conditional
whose only parameter is

k and based on a single r.v.,
which is conditional posterior.
The stopping-rule S gives the number of
failures “s” to stop after many discrete
time units (days, weeks, etc.) or number of
test cases.

C Combination notation to denote
how many different unordered combina-
tions of “size k out of a sample of n” exist.

DR1-5 Effort-based time-independent (using test
cases) coverage data sets 1 to 5.

A nonstationary CP arrival process is given in [6], [9]–[14],
and ([20], pp. 90—101)

(1)

where, and the compounding clump sizes
are iid and, where are distributed with LSD [8] (LSD) as
follows:

(2)

and

(3)

Then, is a Poisson LSD process when
Poisson and LSD for .
However, if we let

(4)

where

(5)

then, Poisson LSD, is an r.v. with NBD.
when is the number of expected failures within the next
time or effort unit. Since

(6)

where

(7)

and its characteristic function (cf.) is derived as follows:

(8)

where is the cf. of LSD which is given by

(9)
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Then

(10)

Note, is the cf. of NBD. Now, the probability distri-
bution function of X is

(11)

where C denotes combination operator and from (7)

(12)

where . Thus, reorganizing (11)

(13)

Since the positive autocorrelation among the failures or
branches in a cluster is not constant, and for it varies from
one to another, it can be well treated as a random variable
denoted by that ranges from 0 to 1. Hence, among continuous
distributions with a range between 0 and 1, the Beta distribution
can be considered as a conjugate prior distribution forwith
its corresponding pdf. Since , we let the prior pdf of
the r.v. to be a Beta pdf with

(14)

(15)

Then, the joint pdf of and is given as follows:

(16)

and whereas the marginal distribution of X is given as

(17)

Now, by using the Bayes’ theorem [2], [16] where
, the posterior distribution of is de-

rived as follows:

(18)

and this is a well-known Beta distribution, as in (19)

(19)

With respect to squared-error loss function definition [16], its
expected value is given as

(20)

which is the defined to be the Bayes estimator. We know that
the expected value of the r.v. X, which is an NBD, is given as in
the following by substituting the Bayes posterior pdf offrom
(19) into (21), then using (12) for p, and

(21)

(22)

Therefore and thus
from (4) can be approximated recursively as in (23), when the
posterior Bayes estimator offrom (20), i.e.,

is entered for in (4) and

(23)

which is a nonlinear equation that can be readily solved using
Newton–Raphson method, employing an initial . Since
and are given constants, and at each discrete step, we use the
accumulated X (total failure or branch coverage) and calculate
the constant “k” for the next step.

However, using the generalized (incomplete) Beta prior [5]
instead of the standard Beta prior can be more reasonable and
realistic since the former includes the expert opinion (some-
times called an “educated guess”) about the feasible range of
the parameter . Therefore, can be entered by
the analyst as a range or difference this time in the form of

to reflect a range of a prior
belief of positive correlation among the software failures or
branches covered in a clump. And finally, we derive a more gen-
eral (24) for the “generalized beta” to replace the earlier (23)
that was derived for the “standard beta prior.” The author can
be contacted for a detailed derivation of (24) and consequently
(27)

(24)

Therefore, (23) transforms into (24) for the generalized Beta.
For example, when and , we will have

.
One should emphasize that X is an input data to denote the

experienced value of number of discovered failures or covered
branches as a realization of the CP. Consequently, is the
expected value of software failures or branch coverage in the
next unit of time or discrete effort (test case). If is multi-
plied by the time units or efforts (test cases) remaining, than one
predicts the expected number of remaining failures or branches.

III. PROPOSEDSTOPPINGRULE IN SOFTWARETESTING

If the expected incremental difference between sequential
steps, where i denotes testing interval in terms
of days, weeks in time-domain or test cases in effort domain,
is illustrated to exceed a given economic criterion “d”, then
continue testing. Otherwise stop testing Observe below in
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one-step-look-ahead formula, whose utility is maximized (or
loss minimized) as shown earlier in the publication by [6], [13],
[21].

(25)

where, (25) can be rearranged in the form of (26) by utilizing
(24)

(26)

However, incorporating the Generalized Beta, as shown by
(27) at the bottom of the page, where and

, and are input values at each discrete step i.
Note that (27) defaults to (26) for and or

, when neither an expert
judgment or nor an educated guess exists on the bounds of cor-
relation strength for failure clumps. If we were to stop at a dis-
crete interval i, we assume that the discovered failures or branch
coverage will have to accrue in the field a cost of “a” per failure
or branch after the fact or following the release of the software.
Thus, there is an expected cost over the interval of

for stopping at time or test-case i. If we continue
testing over the interval, we assume that there is a fixed cost of
“c” for testing, and a variable cost of “b” of fixing each failure
found during the testing before the fact or preceding the release
of the software. Note that “a” is usually larger than “b” since it
should be considerably more expensive to fix a failure (or re-
cover an undiscovered branch) in the field than to observe and
fix it while testing. Thus, the expected cost for the continuation
of testing for the next time interval or test-case is .
This cost model [6] is somewhat similar, if not exactly the same,
to that of criterion expressed in [1]. Opportunity or shadow cost
is not considered here since such an additional or implied cost
may be included within a more expensive and remedial after-re-
lease cost coefficient denoted by “a.” Some researchers are not
content with these fixed costs. However, the MESAT tool em-
ployed here can treat that problem through a “variable costing”
data driven approach as needed by the testing analyst. That is, a
separate value is entered in the MESAT java applet for a oror

at each test case at will, if these cost parameters are defined to
vary from test-case to test-case.

Therefore, an alternative cost model similar to that of Dallal
and Mallows is used [1], [6]. If for the ith unit interval beginning
at time t or for the ith test-case, the expected cost of stopping
is greater than or equal to the expected cost of continuing, i.e.,
therefore

(28)

then, it is economical to continue testing through the interval or
effort. On the other hand, if the expected cost of stopping is less

than the expected cost of continuing (when inequality sign is
reversed), it is more economical and cost effective to stop testing

(29)

The decision theoretic justification for this stopping rule is triv-
ially simple. When is almost identical at the
point of equality or equilibrium where the decision of stopping
has the most utility (lowest loss) due to negligible difference be-
tween the old and fresh information, we stop at a balance point
between undertesting and overtesting. Then, (29) follows as in
(30)

(30)

However, this research paper also maintains that one-step-
look-ahead decision is not the only way. A multistrategy such
as a two-stage decision making is shown to be superior as also
recently studied by Sahinogluet al. [41]. This is equivalent to
using the same stopping rule for the latent data following the de-
cision made for the earlier stopping rules as McDaid and Wilson
studied [38] based on Singpurwalla’s and Wilson’s taxonomy
in their most recent book ([45], chapter 6). The (27) here is nei-
ther a fixed-time look-ahead nor a one-bug look-ahead plan as
outlined in the same book [45]. However, it is a one-stage look
ahead testing, further fortified by a second or third stage testing
if needed, which is called a multistrategy testing plan, in this
paper as supported in some recent publications by the author
and his co-authors [17]–[19], [41], [44]. Screen 1 and Graphs 1
and 2 show the practical application of these multistrategy rules
using the proposed look-ahead (27) under the newly proposed
NBD probability model, which is a compounded NHPP.

The above stopping rule outline through (25)–(30) essen-
tially state that, if the expected number of failures (or branch
coverage) that can be found in the software in the next unit
time or effort is sufficiently small, one should stop testing and
release the software package to the end user. If the expected
number of failures (branch coverage) is large, one should con-
tinue testing to cover more grounds. The stopping rule depends
on an up-to-date expression for a PoissonLSD distribution,
or NBD given a special assumption holding. Therefore we
need accurate estimates ofto update stepwise. However, such
estimates depend on the history of testing, which implies the
use of an empirical Bayes decision procedures as described
above, such as in the “statistician’s reward” or ”secretary”
problem of the optimal stopping chapter where a fixed cost “c”
per observation is considered [1], [2], [7], [37]–[40], [42].

Moreover, the divergence factor, in (30)
signifies the ratio of thecost “c” of performing a test over
the difference between the higher “a” cost of catching a failure
after the fact andthe lower “b” cost of catching a failurebe-
fore release. Given, the numerator “c” is constant, intuitively, a

(27)
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Screen 1. MESAT Version 2.1.

large difference between “a” and “b,” hence a smaller “d”, will
delay the stopping moment as it is costlier to stop prematurely
by leaving uncorrected failures or undetected branches. Also,
given the denominator “a-b” is constant, a smaller testing cost
per test-case “c” yielding a smaller ”d”, will likewise delay the
stopping moment as it is cheaper to experiment more. More-
over, , and are input constants at each discrete
step i, where, and are apriori parameters for the LSD
in the Bayesian analysis, where denotes the posi-
tive-correlation-coefficient-like parameterof LSD. In (4) and
(20), k is an unknown quantity. Note thatand k together define
the Poisson , which is an important parameter of the model.
A complete Bayesian analysis requires an inference on k as
well. Note that even though such analysis does not yield analyti-
cally tractable results, it can easily be done using Markov Chain
Monte Carlo (MCMC) methods. Since k is not described prob-
abilistically, but estimated using data, the approach followed is
not fully a Bayesian, however an empirical Bayesian [43]. Also,

MCMC is beyond the scope of this research paper that does not
use a fully Bayesian approach.

and are upper and lower constraints for, if default sit-
uation is not selected. Now, let RF Remaining
number of faults or coverage after the stopping action and RT
Remaining number of test cases after the stopping action. Then
in order for the stopping-rule algorithm to be cost-efficient, the
below equation all in $ units should hold

(31)

from which, the inequalities for “ ”, “ ,” and “ ” can
validly be derived using simple algebra

(32)

(33)

(34)
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Graph 1. Plot of multistrategy stopping rule for DR5 at a minimum 80% confidence level.

Graph 2. Plot of multistrategy stopping rule for DR5 at a minimum 90% confidence level.

IV. A PPLICATIONS AND RESULTS

RHS of (31) is the dollar amount of savings due to stopping-
action taken, by not executing the remaining test cases and by
not correcting or detecting remaining faults (or branches). LHS
of (31) is the dollar amount of potential loss if those remaining
faults or coverage were to be corrected after release. If RHS is
more than LHS in (31), then, it is a positive gain; otherwise, a
negative loss. Let #TC total number of test cases, #NCtotal
number of coverage, and #MC minimum coverage required,
which is equal to CL times #NC. Below in Table I are the 6
varying cost-scenarios for Table II that also indicates the subtle
effect due to additional information on the range of.

There are five quadruplets in Table II, each signifying one
data set, where each row in a quadruplet pertains to one of
the four sensitivity studies for six cost-scenarios. Note that the
first rows in each quadruplet demonstrate a test environment
where the #TC is not available with therefore no confidence
level (CL) specified. Thus, the testing halts whenever the one-

step-look-ahead formula in (27) holds after at least two test
cases with nonzero failures or branch coverage. Second rows
in each quadruplet again possess no specified CL, but testing is
allowed to continue until or past a certain given minimal number
of test cases specified by the analyst and denoted by #TC due
to an availability of budget resources, when again (27) is first
verified.

To exemplify in Table II, for DR5’s first row, stop at second
test-case after covering four branches when (27) is first veri-
fied. For DR5’s second row, when CL did not apply due to
final number of failures or branches unknown, at least a typ-
ical prescribed minimal 1094 test cases were allowed to run
at which the decisive (27) was also verified. Third and fourth
rows in each quadruplet behave with respect to a confidence
level of 0.80 (or 80%) and 0.9 (or 90%), respectively. Testing
may halt on or after ensuring this specified minimal confidence
level of coverage, since the total number of failures or branches
is available. #TC in rows 3 and 4 simply display the total pre-
scribed number of test cases for each data set. For DR5s 3rd
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TABLE I
SIX COST SCENARIOS AND THEIR SENSITIVITY STUDIES FORTABLE II

row, testing stops at 100th test-case for a after cov-
ering 38 branches, exceeding the # , which is found by

# . Also, “a” per undiscovered
fault should be at most $26 950 according to the scenario (1), “b”
should be at least $17 405 for the scenario (3), and “c” should
be at least $15, in order for the stopping rule to be cost effective.
Total savings is $ due to scenario “(5)Saved” with
the assumed cost parameters as shown in Table II and Screen 1.
For DR5s 4th row, with , one stops at 2042nd test-case
covering 42 branches to save .

The body of test cases is essentially randomized as in the
major assumption of Poisson or Bernoulli counting processes.
Savings or losses are definitely a function of the cost
parameters involved in each scenario. Essentially, if the cost of
redeeming coverage (failure or branch) is high, then it is disad-
vantageous to stop prematurely with respect to a stopping-rule
algorithm, such as in MESAT. If the cost parameters are not
known, then a sensitivity analysis can be conducted to observe a
range of losses or savings. MESAT enjoys the benefit of a con-
fidence level (CL) at will due to budget resources’ availability,
in addition to a one-step-ahead-criterion (27) controlled by a
divergence factor, “d.” Moreover, the MESAT algorithm effec-
tively accounts for the clumping of the coverage, as well as the
positive autocorrelation among the observations in an aggregate.
MESAT is also flexible when the final number of coverage may
not be known as exemplified in Table II, where you allow a min-
imal number of test cases to run. This method is also flexible for
employing variable cost values, “a”, “b, ” or “c”,, at different
test cases across the spectrum, where some test cases may have
more weight than others.

Note that in Table II, implies the usage of default
standard Beta prior, whereas implies the implemen-
tation of the generalized Beta prior treated. It is clear that as the
economic stopping criterion “d” varies from a liberal (higher)
to a conservative (lower) threshold, the stopping rule is shifted
and postponed to a later test-case, if not the same. By a con-
servative set-up, we mean a scenario where the stopping rule is
trying not to miss any failures and testing activity is likely to
stop later, rather than sooner. The correlation behavior within
each clump is represented by our choice ofand in the light
of previous engineering judgment. Note that for , like in

and as imposed in the empirical Bayesian sense
in the examples of Table II, the posterior r.v. ofdisplays a dis-
tinctly left-skewed behavior. It has been observed that the stop-
ping occurs earlier in this scenario. However, in as in e.g.,

, where the Beta distribution looks evenly symmet-
rical as opposed to the presently skewed ones since , the
correlation among coverage in each test-case is not that strong.
In the latter case, it has been observed that the stopping rule then

was delayed somewhat if not considerably. Therefore a choice
of by Appendix I as in the goodness of fit tests is statis-
tically feasible and acceptable.

As for the range of correlation coefficient of LSD,
, having a range of first 1.0 (uneducated guess) and then

gradually dropping to a 0.5 does generally, if not always, have
a subtle savings effect. This is why a Generalized Beta prior [5]
was chosen to incorporate the expert opinion for the range of

and recognize the infeasibility of very low imposedto lend
freedom to versatility rather than assuming the default case of

flat when anything goes to avoid statistically
unrealistic autocorrelation values of. Note that in Appendix
I, the goodness of fit chi-square tests do not involve counts of
zero for the underlying LSD tested as the r.v. w for LSD takes
on nonzero values, as shown in (2) where the
constant “a” is given by (3). Therefore, the blocks will show
the frequencies of nonzero entities, where the zero count can be
found by subtracting from the total number of test cases for each
data set.

Screen 1 displays the menu of the aforementioned param-
eters, including the moving average with a default value of 1
and the goodness of fit test as in Appendix I. It has been found
that for DR5, a moving average of 32 gives the best smoothing
practice, which in turn calculates the corresponding exponential
smoothing factor of 0.0606 [47]. Variable cost data can also be
applied, either with a linearly changing slope or by using forced
data of the cost parameters c, b, and a, respectively, for each test
case entered.

V. DISCUSSION ANDCONCLUSION

The contribution of proposed methodology lies in an empir-
ical Bayesian approach to determine an economically efficient
stopping rule in a CP setting that takes the accumulation of
failure clumps at each step into account in a software-failure (or
branch coverage) counting process. This work is a follow-up to
previous research done on PoissonLSD as applied to com-
puter software testing [10]–[13]. This research also presents an
alternative to the previous publication in that the compounding
distribution was assumed to be geometric (hence, Poisson
Geometric) due to its forgetfulness or independence property
of the clumped failures and where additionally the stochastic
time index was assumed to be in terms of CPU seconds [6]. This
paper also addresses the effort-domain problem where the unit
tests per calendar weeks are now replaced by test cases or test
vectors as sometimes called in embedded-chips testing. How-
ever, in this paper, the compounding density is an LSD where
failures are interdependent assumed to affect each other ad-
versely by employing test cases as opposed to a continuous time
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TABLE II
STOPPINGRULES “S( � ) = s” OFDR1(#NC = 134 IN #TC = 200) OF ROWS1–4,DR2(#NC = 92 IN #TC = 185) OF ROWS5–8,DR3(#NC = 44

IN #TC = 100) OF ROWS 9–12,DR4(#NC = 63 IN #TC = 200) OF ROWS13–16,DR5(#NC = 46 IN #TC = 2176) OF ROWS17–20WHEN � = 8
AND � = 2. (�). WITH THE TWO-STAGE APPLICATION, THEREIS ADDITIONAL +$58 000 FORDR5 AS CALCULATED IN TABLE VI. A LL OF TABLE II’ S STOPPING

RULES SHOWN ARE ONE-STAGE TESTING RESULTS FORSIMPLICITY PURPOSES

TABLE III
STOPPINGRULES USED IN CASE STUDY [49]

domain in terms of CPU seconds or hours or weeks. Recall that
the dual of a time-dependent Poisson process is a time-inde-
pendent discrete Bernoulli process whose theory is sufficiently
strong to handle the unit test-case phenomenon replacing the
unit test-week as a stochastic index where the response variable
is the number of failures or branch coverage etc. [20]. This is in
line with the test-case based testing activity, where limiting dis-
tribution of the sum of the nonhomogeneous Bernoulli variables
is the Poisson process, where np, with n number of
Bernoulli trials and p probability of detecting a failure or cov-
ering a branch ([9] and [50], p. 304).

The stopping rule is applied to five effort-domain test data
sets, namely DR1 to DR5 compiled by CS Labs at Colorado
State University [17]–[19], [48], [49] and also to a DoD data
set [41], [44]. This stopping-rule method is a new derivative of
the original publications on “The Compound Poisson Reliability

Model” [11], [12]. The number of failures or branches covered is
independent from test-case to test-case. Test cases are random-
ized, and not in any specific order. However, the total number
of contributions or coverage at each one-step-look-ahead check
assures the testing activity to stop due to a specified criterion
“d” for a set of specified cost parametersand imposed on
the data set itself having learned from previous similar activity
or subjective guesswork. Then, the software analyst can apply a
subsequent testing strategy after stopping due to saturation ef-
fect with respect to an economic criterion, provided that a de-
sired confidence level is satisfied in order to see the effect of the
following scheme.

Therefore, the same algorithm can be applied for a next
strategy to judge where to stop. Hence a mixed sequence of
strategies can be employed for best efficiency to save time
and effort, i.e., overall resources. This is sometimes called
“mixed strategy testing” [17]–[19], [41], [44]. It is shown by
McDaid and Wilson [38] that two stage sampling is superior
to single stage as illustrated in our examples given in Screen
1 and Graphs 1 and 2. It is most likely that by sacrificing
only small percentage of failure or branch coverage accuracy,
one can literally spare wasted testing resources because of
persisting on the same futile testing strategy, on a journey to
the unknown. Also, as “d” gets smaller, usually stopping is
delayed for fine-tuning. The saving of testing resources can
be considerably crucial for large testing problems. This stop-
ping-rule method is therefore based on a Bayesian approach
of updating the historical information experienced for future
decision-making. It assumes by PoissonLSD (negative
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binomial, for a special case) model where the contributed
failure or branch coverage clumped in a test-case is positively
correlated. This implies that an occurrence of failure or branch
is likely to invite a next failure or branch. For further research,
a variety of informative priors can be considered as alternatives
to conjugate prior generalized Beta for [5], [21].

Further, to provide readers with fundamental information
about what sorts of methods currently exist for a variety of
projects as listed in Table III for the stopping-rule problem
this paper is dealing with, and to provide evidence that the
method proposed herein is a substantial improvement, lists of
comparisons over the other existing methods in circulation are
presented in Appendix II. In summary, the proposed MESAT
is progressive and more data friendly in terms of its EDA that
other methods do not attempt to study for diagnosis. MESAT
is suitable for those data sets, which satisfy the goodness of
fit criterion of their clump-size distribution with respect to
a hypothesized LSD. This property of MESAT is therefore
discriminative, rather than fitting for all purposes. It is generally
true that the branch coverage data sets obey the assumptions
stated at least in this paper. This is why five out of five data
sets proved positive for the LSD assumed; hence good fits
are declared for NBD in natural consequence by (1) to (13)
in Section II. MESATs only seemingly subtle disadvantage is
the assumption of independent (randomized) test cases, which
is a requirement for the independent increments property of
the Poisson processes as the major underlying distribution of
counts in this research. However, as earlier explained in Section
I, the randomization assumption is a practical reality in testing
practice. Even if otherwise suspected, there is no universally
accepted solution of modeling the correlation of test cases for
each testing activity whose results are not known in advance by
the nature of surprise factor in software testing.

APPENDIX I
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APPENDIX II
COMPARISONS OF THEPROPOSEDCP RULE

WITH OTHER STOPPINGRULES

Almost all of the existing statistical models used to determine
stopping-points stem from research results in software engi-
neering [22], [34], [37]–[41], [44]. Many models have been pro-
posed assessing the reliability measurements of software sys-
tems to help designers evaluate, predict, and improve the quality
of their software systems [23]–[32]. However, software relia-
bility models aim at estimating the remaining faults in a given
software program, which makes the direct use of such models
not beneficial in estimating the number of remaining uncov-
ered branches in a behavioral model since the remaining uncov-
ered branches are known. Instead, the estimation process can
be slightly modified to focus on the expected number of faults,
or coverage items in the case of behavioral model verification,
within the next unit of testing time. Unfortunately, all the ex-
isting software reliability models assume that failures occur one
at a time, except for the proposed MESAT approach that uses
a CP. Based on this assumption, expectations of the times be-
tween failures are carried on. In observing new coverage items
in a behavioral model, branches are typically covered in clumps.
Besides, in the proposed MESAT tool, the positive correlation
within a clump is taken into account.

The confidence-based modeling approach [27], [28] takes ad-
vantage of hypothesis testing in determining the saturation of
the software failure. A null hypothesisH is performed and later
examined experimentally based on an assumed probability dis-
tribution for the number of failures in a given software. Suppose
that a failure has a probability less than or equal to B to occur,
then we are at least B confident thatH is true. Similarly,
if the failures for the next period of testing time have the same
probability of at leastB to occur, then for the nextN testing
cycles, we have a confidence of at leastC that no failures will
happen, where

C B (A2.1)

(A2.2)

If , then by using (A2.2), . This is a
single-equation stopping-rule method, which can be likened to
a parallel system of N independent components whose reliabili-
ties are identical to be each to satisfy an overall network
reliability of C ([36], p. 265). To apply Howden’s model to the

process of HDL verification, we first need to create failures as
interruptions, where an interruption is an incident where one or
more new part of the model are exercised. Using branch cov-
erage as a test criterion, an interruption, therefore indicates one
or more new branches are covered. We set a probability for the
interruption rate B and choose an upper-bound level of confi-
dence C. Experimentally, we do not examine the hypothesis un-
less the interruption rate becomes smaller than the preset value
B. When so, we calculate the number of test patterns needed to
have at least C confidence of not having any new branch in the
next N patterns and run them. If an interruption occurs, we con-
tinue examining the hypothesis until we prove it and then stop.
In this approach, we assume that coverage items, or indeed inter-
ruptions are independent and have equal probabilities of being
covered. The rate of interruption is decreasing and we assume
no interruptions will occur in the next N test cases; then, the ex-
pected probability of interruptions will be [27], [28], [34]

(A2.3)

where T is the last checked point in testing, and this leads to the
reformulation of (A2.1) as follows:

C
N

(A2.4)

Branches in behavioral models are usually covered in clumps
during the verification process. One could consider the event
of having one or more new covered branches as an interrup-
tion. Thus, interruptions could be treated as failures with a
chosen upper-bound probability B where the hypothesis is not
examined unless the interruption rate becomes smaller than
this preset value B. The confidence of having an interruption is
then calculated based on the interruption rate. Nevertheless, it
was assumed that interruptions are independent of each other.
Some authors support that this is not correct [33], [34]. In fact,
branches in behavioral models can be classified as dominant,
and controlled branches where it is impossible to cover the
lower level branches without covering their dominant branches.
Moreover, the sizes of the interruptions are not modeled in
[27], [28] making the understanding of the branch behavior
less informative. Sanping Chen and Shirley Mills developed a
statistical Markov process or Binary Markov model [29], [34]
where the probabilistic distribution assumptions are the same
as confidence-based model except that failures are statistically
dependent with a certain unknown correlation constant,.
Again, if interruptions are correlated, then the probability of
having no interruptions in the nextN test cases is

p N B B B N (A2.5)

that makes the confidence asC p N B . Chen and
Mill’s model still doesn’t deal with the issue of clumping. Fur-
thermore, the value of in this model is unknown, and authors
experimentally assumed different values ranging from 0 to 0.9
and obtained different results. Thus,needs to be determined
experimentally.

In Howden’s model, the assumption that failures or interrup-
tions have a given probability B independently is erroneous.
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TABLE IV
RESULTS OFSTOPPING-RULE COVERAGE FORSTATIC CASE STUDY WHERECOVERAGEPER TESTINGPATTERN CAN BE CALCULATED (i.e., COVERAGE/PATTERNS)

WITHOUT USING COST FACTORS[49]

Branches in an HDL model, as we know are strongly depen-
dent of each other. In fact, we can classify some branches where
it is impossible to cover the lower level ones without covering
their dominants. Moreover, the clump sizes caused by the in-
terruptions are not modeled in this study making the decision
of continuing or stopping the testing process inaccurate. Last,
this work does not incorporate the cost of testing or releasing
the product, and the goal of testing in the first place is not only
having a high quality product but also minimizing the testing
costs [34].

Dallal and Mallows [1] assumed that the total number of fail-
ures in a given software is a random variable with unknown
mean, and the number of failures occur during the testing time is
a nonhomogeneous Poisson process with incrementsg t . The
time needed for a single failure to occur is distributed asg t ,
which can be assumed exponential. This model has a better de-
scription for the failure process over the previous models so far
discussed, such as Howden and modified Howden’s in Chen and
Mill’s models. However, it still suffers from the problem of not
having more than one interruption at a time, which reduces the
efficiency of the model when applying it to branch coverage es-
timation [34].

Finally, the author of this manuscript, S¸ahinŏglu et al.
[11]–[13], [17]–[19] whereas applied a CP model that models
the branch coverage process of VHDL circuits utilizing the
benefits of the “Dallal and Mallows” economic model by
reformulating it [6] and solving the clumping phenomenon
of branches being covered in the testing process. This model
uses the empirical Bayesian principles for the compounded

Poisson counting process. It was previously introduced as
a software reliability model for the remaining number of
failures’ estimation in 1992 [11] and later modified to in-
corporate a version of the cost modeling proposed by Dallal
and Mallows in 1995 [6], [13]. Recently, it was formulated
to model the branch coverage process in behavioral models
[17]–[19]. The idea is to compound potentially two probability
distributions, for both the number of interruptions and the
size of interruptions. The resulting compound distribution is
assumed to be the probability distribution function of the total
number of failures, or coverage items, at a certain testing time
point. The parameters of the distributions are also assumed
to be random variables based on the empirical Bayesian
estimation. For modeling the branch coverage process for
behavioral models, it is assumed that the number of inter-
ruptions over the time,N t , is a Poisson process with mean

, and the size of each given interruption,w , is distributed
as a Logarithmic Series Distribution (LSD). See diagnostics
of Appendix I for the justification of LSD of clump sizes.
The resulting compound distribution for the total number of
failures, which is the sum of the sizes, is also known as an
NBD, if the Poisson parameter is set to k . The
CP model takes into account the clumps of the coverage items
in a statistical manner by updating the assumed probability
distribution parameters in every test-case based on the testing
history. However, interruptions in the testing process are
assumed to be independent, mainly due to the “independent
increments property” of the anchoring Poisson process. The
proposed MESAT also incorporates a minimal confidence rule
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TABLE V
RESULTS OFCOST ANALYSIS FOR A DYNAMIC CASE STUDY WHEREa = $5000; b = $500, AND c = $1 [44]

in addition to applying the one-step-ahead formula of (27) for
assessing whether to stop or continue economically.

All the previously discussed stopping rules assume that the
failures or interruptions are random processes according to a
given probability distribution. A sequential sampling technique
that doesn’t involve any assumptions on the probability distribu-
tions for the failure process was presented in [25]. Recently, the
technique is applied to VHDL models in determining the stop-
ping points for a given testing history of branch coverage [30].
The model evaluates the stopping decision based on three key
factors: the discrimination ratio , the supplier risk , and
the consumer risk . If the number of cumulative coverage at
time t is X t , then the testing process should be stopped at

X t (A2.6)

The stopping decision strongly depends on the value ofmuch
more than and . The decision doesn’t incorporate any cost
model of the testing process. In [25], the variable was modified
with respect to testing strategies such that if higher coverage
were achieved in the previous test strategy, the value of is in-
creased in the current test strategy in order to decrease the expec-
tation of achieving more coverage in the current strategy. The

new value of , therefore, becomes: , where is
the coverage increase achieved in the previous test strategy The
value of , however, remains the same if . This type of sta-
tistical modeling doesn’t use any priori probability distribution
for the data provided. This is one reason why the sequential sam-
pling models are widely used in many testing areas [33], [34].
However, the cost of testing is not modeled in making the stop-
ping decision. Moreover in the opinion of this manuscript’s au-
thor, the stopping point determined by the sequential sampling
model is very sensitive to the value chosen during the testing
process. (A2.6) is an equation subject to an abusive use for pur-
poses of experimental validation. Authors of this approach [30]
have earlier suggested values forup to 250, whereas Musa’s
[25] text only uses in the order of 5 or 10. Excessive values
of pose a contradiction and threat to the Wald’s SPRT theory
for sequential testing in terms of type I (whose probability is

) and II (whose probability is ) errors. The same holds true
for which authors in their related paper have suggested to be

, a relatively exaggerated value compared to Musa’s
. Singpurwallaet al. [37], [40], [45], McDaid and

Wilson [38] and Ross [39] have developed their own stopping
rules with differing statistical assumptions on one- or two-stage
testing schemes. However, because these techniques have not
been experimented on “hardware or silicon testing” with respect



ŞAHINOĞLU: EMPIRICAL BAYESIAN STOPPING RULE 1441

TABLE VI
RESULTS OFDR5 MIXED STRATEGY STOPPING- RULE AT A MINIMUM 80% CONFIDENCELEVEL

to branch coverage, no comparative results are available in the
engineering literature in terms of merits.

The above arguments suggest that the proposed
MESAT employing both a minimal confidence rule and
one-step-look-ahead formula within a single or multistage
testing scenario to justify a decision taken whether to continue
or stop testing, has the imminent advantages of recognizing the
clumping effect in coverage testing as well as incorporating the
economic criteria in addition to its data discriminative traits by
conducting EDA through diagnostic checks. It is imperative
that a diagnostic check, such as in Appendix I, be undertaken
if similar exhaustive test results are available. This is necessary
to justify the usage of the LSD model for the clump sizes, a
model that eventually leads to the NBD assumption for the total
number of coverage by default in the wake of the expression

assumed to hold true.

For a more thorough comparative case study, research done
by Hajjar and Chen was utilized [22], [49], where nine different
stopping rules, shown in Table III were applied to 14 different
VHDL models [44]. The results of the stopping-rule determina-
tions are shown in Table IV, including results without the use of
any stopping rule. This stopping-rule comparison portrays the
CP method as having one of the lowest efficiencies based on a
naive “coverage per testing pattern” index, which is defined as
the number of branches covered divided by the total test patterns
used. Despite their index rating, CP found the most faults for 10
out of the 14 VHDL models, while ranking second in B15, third
in B01 and fourth in B04. Furthermore, no economic analysis
has been performed to illustrate the monetary gain or loss asso-
ciated with the various stopping rules. Let us now use the cost
benefit criterion of (31) in the main paper, where RF is the re-
maining number of failures uncovered and RT is the remaining
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TABLE VII
RESULTS OFDR5 MIXED STRATEGY STOPPINGRULE AT A MINIMUM

90% CONFIDENCELEVEL

number of test patterns unused when stopped. For an example,
we will use since cost of redemp-
tion of after-market is 10 times more than that of before. Using
the Sys7 data with CP, we get [44], [48]:

, showing CP to be cost effec-
tive by . Comparing Sys7 with
DB, we get

, showing DB to not
be cost effective by . Why a
ratio of 10 used between before-release and after-release costs?
The main reason is that silicon testing, unlike software testing,
is more expensive for uncovered branches or failures. Tables
VI and VII illustrate the results of a mixed-strategy testing
activity.

Although access to the VHDL model data used in Hajjaret
al.’s research [49] was not available, a cost analysis could still
be applied to their results. By performing this cost analysis on
the stopping points in Table III and comparing the results, the
economically beneficial stopping rules were determined for a
given cost criterion. Using the cost criterion of (31), in a case
study in which a cost index was applied to the data with cost
values of , and . The CP stopping
rule was clearly more beneficial. As can be seen in Table V,
of the nine stopping rules used in that study, the CP stopping
rule ranked very high with regards to savings in many of the
VHDL data sets used for comparison. Low cost of testing in
conjunction with high post-release repair cost render the CP
stopping rule superior to many of the other stopping rules
in the study. The incentive behind the mixed strategy testing
is that a bug undetected in a silicon embedded chip is much
more costly than a bug in software, and, therefore, the stopping
rule needs to be very conservative. At the end of the spectrum,
because the cost of testing is much less than the cost of a bug in
silicon, it seems that a nonconservative stopping rule is worse
than some other rules. Another angle can be extracted from the
Table IV, where the number of branch coverage in SB (Hajjar
and Chen’s proposed rule) is more than 10%fewer than the
original (no stopping rule). This is probably not acceptable in
hardware. A comparison: ATPG typically aims for % fault
coverage, and a user would probably aim for even 1% increases
in coverage point, if it is achievable in a reasonable amount of
computation. So the proposed rule is probably a good rule to
“switch” instead of “stop” the testing process.
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