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Abstract—Software stopping rules are tools to effectively I. INTRODUCTION AND MOTIVATION
minimize the time and cost involved in software testing. The
I‘"’"golritr]lrgs Serr‘]’e t‘; gulid(e thfe lteSti)”g process Sucg‘ thatéf a Cﬁrtai” HIS PAPER describes a statistical model to devise a stop-
evel of branch or fault (or failure) coverage is obtained without T . - o
the expectation of further significant coverage, then the testing plng ,C”t?rlon for random_ testing In VHD_L _based _hard_'
strategy can be stopped or Changed to accommodate further’ more ware Ver|f|cat|0n The methOd IS ba.sed on StatIStlcaJ estimation
advanced testing strategies. By combining cost analysis with a of branching coverage and will flag the stopping criteria to halt
variety of stopping-rule algorithms, a comparison can be made the verification process or to switch to a different verification
to determine an optimally cost-effective stopping point. A novel strategy. The paper gives some results on some VHDL descrip-

cost-effective stopping rule using empirical Bayesian principles for . . : . . .
a nonhomogenegﬁs %’oisson C%umirr’]g proce)és con?poun%ed witrfions. This paper builds upon the statistical behavior of failure

logarithmic-series distribution (LSD) is derived and satisfactorily (O fault) or branch coverage described in Section Il. Applying

applied to digital software testing and verification. It is assumed empirical Bayesian and other statistical methods to problems in
that the software failures or branches covered, whichever the hardware verification, such as better stopping rules, should be
case may be, clustered at the application of a given test-case arey frjtfy| area of research where improvements in the state of

positively correlated, i.e., contagious, implying that the occurrence . _
of one software failure (or coverage of a branch) positively influ- the art would be very valuable. Technically, the general con

ences the occurrence of the next. This phenomenon of clustering CePt is questionable. However, the stopping-rule idea is gener-
of software failures or branch coverage is often observed in ally accepted to be more rational than having no value-engi-
software testing practice. The rv.w; of the failure-clump size neering judgment to stop testing, as often dictated by a com-
of the interval is assumed to have LSDF) and justified on the  merciglly tight time-to-market approach [41]. There is actually

?haetadissiisb%oirgﬁ)l:mngu%%g;sgfuég ggggg ?SS %g{slgri?t'q%\e'vnh"e a large number of research and practical results available in sta-

the distribution of the total number of observed failures, or fistically analyzing hardware verification processes. All major
similarly covered branches, X is a compound Poissofi LSD, i.e., microprocessor companies heavily rely on such concepts. Note,

negative binomial distribution, given that a certain mathematical faults and failures are taken to be synonymous here for conve-
identity holds. For each checkpoint in time, either the software piance.

satisfies a desired reliability attached to an economic criterion, When desiani VLS| in the behavioral | |
or else the software testing is allowed to continue. By using a en designing a VLS| system in the behavioral level, one

one-step-look-ahead formula derived for the model, the proposed Of the most important steps to be taken is verifying its func-
stopping rule is applied to five test case-based data sets acquiredtionality before it is released to the logic/PD design phase. It is
by testing embedded chips through the complex VHDL models. wjidely believed that the quality of a behavioral model is cor-
Further, multistrategy testing is conducted to show its superiority o540 to the experienced branch or fault coverage during its
to single-stage testing. Results are satisfactorily interpreted from ficati .
a_ practitioner's viewpoint as an innovative alternative to the Verification process [17]-{19], [31], [51]. However, measuring
ubiquitous test-it-to-death approach, which is known to waste coverage is just a small part of ensuring that a behavioral model
billions of test cases in a tedious process of finding more bugs. meets the desired quality goal. A more important question is
Moreover, the proposed dynamic stopping-rule algorithm can how to increase the coverage during verification to a certain
validly be employed as an alternative paradigm to the existing |o\g| with a given time-to-market constraint. Current methods
on-line statistical process control methods static in nature for f h il f i ith
the manufacturing industry, provided that underlying statistical US€ brute force where billions of test cases were applied without
assumptions hold. A detailed comparative literature survey of knowing the effectiveness of the techniques used to generate
stopping-rule methods is also included in terms of pros and cons, these test cases [17]-[19], [32], [46]. One may consider behav-
and cost effectiveness. ioral models as oracles in industries to test against when the
Index Terms—Bernoulli process, cluster effect, compound final Chlp is pl’OdUCGd. In this WOTk, in experimental sets in-
Poisson process, cost effective, effort domain, empirical Bayesianvolved, branch coverage (in five data sets of DR1 to DR5) is
analysis, failure or branch coverage, logarithmic-series distri- ysed as a measure for the quality of verifying and testing behav-
bution (LSD), negative binomial distribution (NBD), positive 55| models. Minimum effort for achieving a given quality level
autocorrelation, stopping rule. . . o .
can be realized by using the above proposed empirical Bayesian
stopping rule. The stopping rule guides the process to switch to
Manuscript received December 15, 2002; revised July 9, 2003. a different testing strategy using different types of patterns, i.e.,
The author is with the Department of Computer and Information Scienggandom versus functional, or using different set of parameters to
froy State University Montgomery, Montgomery, Al 36103-4419 USA enerate patterns or test cases or test vectors when the current
(e-mail: mesa@tsum.edu). g p
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0018-9456/03$17.00 © 2003 IEEE



SAHINOéLU: EMPIRICAL BAYESIAN STOPPING RULE 1429

the practice of mixed-strategy testing. One can demonstrate tis@s, which testers are unable to master. Therefg(e, is an
use of the stopping-rule algorithm on complex VHDL modelsunrealistic guesswork and it also clearly varies from one data to
One has observed that switching phases at certain points guidadther, strictly not to be generalized. It is therefore more ra-
by the stopping rule would yield to the same or even better caienal to randomize statistically the interruption activity, which
erage with less number of testing patterns. This method is iarso much more natural as unprecedented test cases may act sur-
innovative alternative to help save millions of test-patterns apdisingly different at random epochs. The randomization phe-
hence reduce cost in the colossal testing process of embeddehenon is also in the spirit of a Poisson process with indepen-
chips versus the conventionally used “test-it-to-death” exhawgent increments on which MESAT tool is structured. The unpre-
tive-testing approach which wastes billions of vectors hopirdjctability factor of fault-arrival or branch-coverage is therefore
to find more bugs in fault testing or cover more branches, dest addressed by a nonhomogenous Poisson process whose rate
leading to a tedious process. of arrival is adjusted, in this case diminished, with the advance
There occur many physical events according to the indeperitime or number of test cases. This nonstationarity of a Poisson
dent Poisson process, and, for each of these Poisson events pooeess takes care of the no-longer independent Poisson arrival
or more other events can occur. This is identified as over-digmes, a phenomenon best displayed by the NHPP ([20], pp.
persion in many life-sciences oriented textbooks, to cover td—101).
total number of certain bacteria or algae clustered on individualWhen a new computer software package is written, compiled
leaves in a water pond to exemplify [3], [4]. If an interruptiorand all obvious software failures are removed for customary
during the testing of a software program is assumed to be duertput sets; then, a testing program is usually initiated to elimi-
one or more software failures (or branch coverage) in a clummate the remaining failures. The common procedure is to use the
and if also the distribution of the total number of interruptions @oftware package on a set of problems, and whenever the testing
test cases is Poisson; then the distribution of total number of éxinterrupted because of one or more programming failures, the
perienced failures, or covered branches is a compound Poissodes are corrected, the software re-compiled, and computation
(CP) [6], [8]-15]. The empirical Bayesian stopping rule, therds re-started. This type of testing can continue for several time
fore, uses the mathematical principles of a Poisson countiagits (hours, days, or weeks, etc.) with the number of failures
process as applied to the count of test cases, with a logarithnper unit time lessening. The same is true for instance when dis-
series distribution (LSD) applied to the cluster size of softwarzetely applied test cases replace test weeks and branch coverage
failures or branch coverage generated by each test-case. It sagiserds replace those of failure coverage. Finally, one reaches a
factorily applies to a time-continuous, compounded and nonhmeint of optimal economic return in time or effort when testing
mogenous Poisson process, as well as to a time-independenissftopped and the software released. However, one is never cer-
fort (or test-case) based testing such as in a sequentially disctata that all software faults due to failures have been removed, or
Bernoulli process. Namely, Poisson process is a time-parasimilarly all branches have been covered. Although there may
eter version of the counting process for Bernoulli trials ([20], fstill be a small number of failures remaining in the software,
72). Itis imperative to recall that often used Binomial process#se chances of finding them within a reasonable time may be so
are the sum of identical Bernoulli distributed random variablesmall that it is not economically feasible to continue testing [6],
However, those Bernoulli random variables at each test-c42&]. The objective is to find a cost-effective stopping rule to
epoch are nonidentical with unequal “arrival” success probabierminate testing. One can add the dimension of a preconceived
ities as earlier studied by Sahinoglu in a 1990 publication [Qonfidence-level) < CL < 1, to ensure minimal coverage re-
The proposed model assumes randomization of test cases inlitility.
spirit of independently incremented Poisson counting processStopping-rule problem has been studied extensively by
since the coverage sizes do not necessarily follow a defingtisticians and engineers [2], [7], [34], [37]-[40], [44]. In
trend unless test cases are ordered in a merit order. This ithia research paper, however, a cost-effective stopping rule is
practice, which is impossible to attain perfectly prior to actugresented with respect to a popularly used one-step-look-ahead
experimentation. Some sources claim that the independentéceonomic criterion when an alternative underlying pdf is as-
crements Poisson arrival model is applicable for the first “susumed for the clump size for the failures or branches observed.
prise” execution against a test suite. On second and subseqUém total nhumber of discovered failures or covered branches
executions, the “arrival” (or discovery) of faults (or branches$ the Poisson counting process compounded with the LSD
is no longer random unless the software development procas®ach Poisson arrival. That is, the number of incidents over
is chaotic or parallel-distributed. Evidently, the applicability ofime is distributed as Poisson, whereas the number of failures
such an independent-increments counting process and hetheg occur as a clump at each interruption epoch or incident is
the proposed stopping rule varies with the maturity of the soffistributed according to a discrete LSD. The failures within a
ware testing activity being developed. This is why the regrestump are positively correlated with each other. This phenom-
sion testing techniques to observe for the said maturity is of relnon is represented by a paraméter § < 1 in the LSD for
evance here in terms of mainstream software engineering [4te clump size r.v. A Poisson distribution compounded by a
Also, some authors support the concept of probability distribdiscrete LSD will be denoted as a Poissbi.SD, namely a
tion function,p(t): interruption correlation function, for the oc-negative binomial distribution (NBD) pending a certain math-
currence of interruptions, a concept which is rather hazy aechatical identity as in (14) below. The algorithm is applied in
nebular [33]. First, the total number of observations should affort domain where test cases are applied for the five data sets
ways be known in advance to model the probability of interrugxperimented on embedded chips [17]-[19], [41], [44].
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[I. NOTATIONS, COMPOUND POISSON AND EMPIRICAL E(X) =kp Expected value of the conditional
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BAYES ESTIMATION X ~ NBD whose only parameter is
k and based on a single r.®, ~ h(4 | X)
which is conditional posterior.

=s The stopping-rule S gives the number of

failures “s” to stop aftef - ) many discrete

time units (days, weeks, etc.) or number of
test cases.

Combination (n, k) notation to denote

how many different unordered combina-

tions of “size k out of a sample of n” exist.

Effort-based time-independent (using test

cases) coverage data sets 1 to 5.

A nonstationary CP arrival process is given in [6], [9]-[14],

Random variable.
Probability density function. )
Independent and identically distributed.
Compound Poisson distribution.

Compound Poisson software reliability
model. C
Jet Propulsion Laboratory.
Logarithmic-series distribution.

Exploratory data analysis. DR1-5
Proposed stopping-rule java applet.
Confidence level, or a minimal percentage

of t?rancheg or_faiIL_Jres to cover. and ([20], pp. 90—101)

Poisson distribution compounded by

LSD. N(t)

Negative binomial distribution. {X(0),t>0)=> w; @)
The r.v. for the number of Poisson events i=1

until and including time “t". . )
Total number of failures distributed w.r.t, Where.N(t) > 1 and the compounding clump sizes, ws, . ...
Poissor LSD until discrete time unitt. are iid and, wheré(w;) are distributed with LSD [8] (LSD) as

The r.v. of failure clump size, distributed follows:

w.r.t. LSD at each Poisson event i. gw

LSD parameter which denotesthe positive ~ f(w) =a——, 0<f# <1, a>0, w=12... (2
correlationd is a realization of the r\®. gngd

Constant for the LSD r.v. of w. 1

3

NBD parameter (calculated recursively at a=

each Poisson epoch).
Poisson rate or parameter wheke = Then,X(t);t > 0 is a Poissorf* LSD process wheiN(t) ~
1

_ln(l -6)

—kIn(1 — #) = k1ngq holds. Poissori\) andw; ~ LSD(¢) fori = 1,2,...[3,4,11,13].
Lower limit of 6. However, if we let

Upper limit of 9.

Characteristic function oK (t). A=-kln(1-6)=klng, k>0 4)
Range for LSD parameter, the correlation

coefficient:65 — 6. where

Reciprocal of(1 — #). When§ = 0, 1

no compounding phenomenon exists; the 1=173 ()

process is then purely Poisson with= 1.
As q > 1 increases, the compounding othen,X ~ Poisson® LSD, is an r.v. with NBD.E(X) = kp
over-dispersion effect also increases. whenE(X) is the number of expected failures within the next
Related parametep, = q — 1. No com- time or effort unit. Since
pounding or pure Poisson when= 0.

Discrete negative-binomial conditional flw) = — - l (Q) (6)
probability distribution of X. lng w q

Prior distribution of the positive correla- _ 11 (g)w

tion parameter. T Ing w\gq

Marginal distribution of X following the

Bayesian analysis. where

Prior Beta distribution for LSD variable.

Positive shape and scale parameters of p=aq-1 q=(+1)>1 @)
gﬁﬁérior conditional distribution of and its characteristic function (cf.) is derived as follows:
after updating for X: failure vector. By (1) = exp{A(u(u) — 1)} ®)

Discrete conditional probability distribu-
tion of X given®. whereg,, (u) is the cf. of LSD which is given by
Bayes estimator w.r.t. squared error loss

function. Expected value of the condi- 1 o
tional posterior r.vf. puw(u) =1 - m{ln(q —pe)}. 9)
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Then

1 iu
Pxy(u) = exp{klnq (1 — m(q —pe') 1)}

= exp{ln(g —pe™) K}
_ (q _ pe”‘)_k. (10)

Note, @ x(4)(u) is the cf. of NBD. Now, the probability distri-

bution function of X is

f(X) = CEHy+! q,ffx (11)
where C denotes combination operator and from (7)
pzq—lzTég—lzfgg (12)
whereq = (1/1 — 6). Thus, reorganizing (11)
(X |9) = Ol (&)X 10X (13)
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With respect to squared-error loss function definition [16], its
expected value is given as

a+ X
a+B+X+k
which is the defined to be the Bayes estimator. We know that
the expected value of the r.v. X, which is an NBD, is given as in
the following by substituting the Bayes posterior pddfom
(19) into (21), then using (12) for p, adi{X) = kp

E(f|X) = (20)

E@):k[nggumxyw (21)
a+X

Therefore\ = —k1In(1 — §) = klng and thusk = (A/Ingq)
from (4) can be approximated recursively as in (23), when the
posterior Bayes estimator éffrom (20), i.e. E(f|X) = (« +

z)/(a+ B+ X + k) is entered fop in (4) and

» a+pB+X+k

e R R B 23
; Btk 23)

which is a nonlinear equation that can be readily solved using

e

Since the positive autocorrelation among the failures Hfewton—Raphson method, employing an initi&h). Sincec
branches in a cluster is not constant, and for it varies frofd are given constants, and at each discrete step, we use the

one to another. it can be well treated as a random varialiecumulated X (total failure or branch coverage) and calculate
denoted by that ranges from 0 to 1. Hence, among continuo8€ constant *k” for the next step. _
distributions with a range between 0 and 1, the Beta distributionfOWever, using the generalized (incomplete) Beta prior [5]

can be considered as a conjugate prior distributiordfarith
its corresponding pdf. Sinde< 6 < 1, we let the prior pdf of
the r.v.0 = ¢ to be a Betga, ) pdf with

I(a)1(8)

_ —\")\F) pa—1 _ B-1
M”‘rm+ﬂﬁ (1—9)P1,
0<f<1; aB>0 (14
f(X|6) = CEH10% (1 — 9)*. (15)

Then, the joint pdf oK = Zf\;(f) w;

L(a)T(B) ,x—1 _
fa+p’ O

ando is given as follows:

1(6.) = IO (1 - o)

(16)
_ ?((Z)i(g)) Ctiﬁl{—maw{q(l _ 0)/3+k71

and whereas the marginal distribution of X is given as

h(X) = Ck+X_1ﬂ/ 0”+X—1(1 _ 0),@+k—1 a6

(@)r(@) [

S T(a+6) Jo
_ kX1 D(a)l'(B) N(a+ B+ X +k)

L Tla+B)Dla+ X)T(B+E)
Now, by using the Bayes’ theorem [2], [16] wheliéf | X) =
[f(X]0)-h(#)]/h(X), the posterior distribution d | X) is de-
rived as follows:
F(O{ + X)F(ﬂ + k) 6()1+X—1
MNa+ 8+ X + k)

and this is a well-known Beta distribution, as in (19)

17)

h(f|X) = (1—9)°+k=1 (18)

h(#|X) = Beta(a + X, 8 + k). (19)

instead of the standard Beta prior can be more reasonable and
realistic since the former includes the expert opinion (some-
times called an “educated guess”) about the feasible range of
the parametefl < 6 < 1. Therefore,d can be entered by
the analyst as a range or difference this time in the form of
dif(f) = 65 (upper) — 6, (lower) to reflect a range of a prior
belief of positive correlation among the software failures or
branches covered in a clump. And finally, we derive a more gen-
eral (24) for the “generalized beta” to replace the earlier (23)
that was derived for the “standard beta prior.” The author can
be contacted for a detailed derivation of (24) and consequently
(27)

_ (a+B8+X+k) (24)

S (1= 4+0)(a+X)+B+E

Therefore, (23) transforms into (24) for the generalized Beta.

For example, whed; = 0 andfy = 0.60, we will have
O/ = (a + B4+ X +k)/(0.40(a + X + B+ k)).

One should emphasize that X is an input data to denote the
experienced value of number of discovered failures or covered
branches as a realization of the CP. Consequeitly,) is the
expected value of software failures or branch coverage in the
next unit of time or discrete effort (test case)EIfX) is multi-
plied by the time units or efforts (test cases) remaining, than one
predicts the expected number of remaining failures or branches.

A
T

e

I1l. PROPOSEDSTOPPINGRULE IN SOFTWARE TESTING

If the expected incremental difference between sequential
steps,i = 1,2,... where i denotes testing interval in terms
of days, weeks in time-domain or test cases in effort domain,
is illustrated to exceed a given economic criterion “d”, then
continue testing. Otherwise stop testing Observe below in
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one-step-look-ahead formula, whose utility is maximized (d¢han the expected cost of continuing (when inequality sign is
loss minimized) as shown earlier in the publication by [6], [L3}eversed), itis more economical and cost effective to stop testing

[21]. aB(Xi1) < bE(X;) +c. (29)

e(X) = E(Xi+1) - E(Xy) <d (25) The decision theoretic justification for this stopping rule is triv-
. ... ially simple. WherE(X; ;) = E(X;) is almost identical at the
V;Zere’ (25) can be rearranged in the form of (26) by ut'“zmgoint of equality or equilibrium where the decision of stopping
(24) has the most utility (lowest loss) due to negligible difference be-
e(X) = kipr (o + Xi41) —k, (a+ X3) <d. (26) tween the old and fresh information, we stop at a balance point
(B—=14+kit1) (B-1+k) — between undertesting and overtesting. Then, (29) follows as in

However, incorporating the Generalized Beta, as shown b?;:o)
(27) at the bottom of the page, whede = (¢/a — b) and _ N
a, 3, ki, Xi, 02, andd; are input values at each discrete step i. EXiy) - E(Xy) = =d. (30)

a—>b
Note that (27) defaults to (26) fa, = 0 andf, = 1 or - P
. However, this research paper also maintains that one-step-
diff(9) = 62 (upper) — 0, (lower) = 1, when neither an expert hap P

ud ¢ ducated st the bounds of look-ahead decision is not the only way. A multistrategy such
judgment ornor an educated guess exists on the bounds of G-, two-stage decision making is shown to be superior as also
relation strength for failure clumps. If we were to stop at a d'?écently studied by Sahinogkt al. [41]. This is equivalent to
crete interval i, we assume that the discovered failures or bra ng the same stopping rule for the latent data following the de-
coverage will have to accrue in t_he field a cost of "a” per fa"urgision made for the earlier stopping rules as McDaid and Wilson
or branch after the fact or following the release of the softwarg:tudied [38] based on Singpurwalla’s and Wilson's taxonomy
Thus, there is an expected cost over the inte(¥al + 1} of in their most recent book ([45], chapter 6). The (27) here is nei-

?EE.Xi} for s:ﬁpplr:g at ;ume =1or teséth-c?;:a ; Ifwe f9(3r‘(§'r]m:"tth r a fixed-time look-ahead nor a one-bug look-ahead plan as
,,ef Ing over the interval, we assume . ‘,",‘ ere 1S a fixed CoStQljined in the same book [45]. However, it is a one-stage look
c” for testing, and a variable cost of “b” of fixing each failure

ahead testing, further fortified by a second or third stage testing

9Ffieeded, which is called a multistrategy testing plan, in this

of the software. Note that “a” is usually larger than “b” since 'éaper as supported in some recent publications by the author

should be considerably more expensive to fix a failure (or re- hi -auth 1711191, [41]. [44]. S 1 and Graphs 1
cover an undiscovered branch) in the field than to observe o his co-authors [17]-19], [41], [44]. Screen 1 and Graphs

o . ) 8 . 2 show the practical application of these multistrategy rules
fix it while testing. Thus, the expected cost for the continuation P Pp 9y

. o using the proposed look-ahead (27) under the newly proposed
of testing for the next ime interval or test-caseS(X;) + . B probabilty model, which is a compounded NHPP.
I cost model [6] is somewhat similar, if not exactly €SaMme, 1he apove stopping rule outline through (25)—(30) essen-

: . , " Lo Blly state that, if the expected number of failures (or branch
is not considered here since such an additional or implied C%%R/erage) that can be found in the software in the next unit

may be included within a more expensive and remedial aﬁer'rtﬁﬁe or effort is sufficiently small, one should stop testing and

lease cost coefficient denoted by “a.” Some researchers are 9 h f
war k he en r. If the ex
content with these fixed costs. However, the MESAT tool e G éase the software package o the end use the expected

s _”Pf;,lmber of failures (branch coverage) is large, one should con-
ployed _here can treat that problem through a variable COStIr]ﬁnue testing to cover more grounds. The stopping rule depends
data driven approach as needed by the testing analyst. That 18h3in up-to-date expression for a PoiséohSD distribution
separate value is entered in the MESAT java applet foriecor '

o . gr NBD given a special assumption holding. Therefore we
c at each test case at will, if these cost parameters are deflneﬁé%d accurate estimatesfaio update stepwise. However, such
vary from test-case to test-case. ’ ’

im nd on the history of ing, which impli h
Therefore, an alternative cost model similar to that of Dall stimates depend on the history of testing, ¢ plies the

f irical B decisi d d ibed
and Mallows is used [1], [6]. If for the ith unitinterval beginningaSe of an empirical Bayes CEcision procedures as cescrive

. . “above, such as in the “statistician’s reward” or "secretary”
at time t or for the ith test-case, the expected cost of StOpp'Bﬂ)blem of the optimal stopping chapter where a fixed cost “c”

Lié]rreefitreer than or equal to the expected cost of continuing, "Ee'r observation is considered [1], [2], [7], [37][40], [42].
Moreover, the divergence factat, = (¢/(a — b)) in (30)
aB(Xiy1) > bE(X) + ¢ (28) signifies the ratio of thecost “c” of performing a test over
the difference between the higher “a” cost of catching a failure
then, it is economical to continue testing through the interval after the fact andhe lower “b” cost of catching a failurbe-
effort. On the other hand, if the expected cost of stopping is lefese release. Given, the numerator “c” is constant, intuitively, a

(02 — 01) (o + Xiy1)
(a+08-14+X;p1+kiy1) — (02 —01)(a+ X;41)

kK

e(X) = ki+1

(02 — 61)(a + Xi)
(a+B—1+Xi+ ki) — (2 — 1) (o + X5)

<d (27)
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large difference between “a” and “b,” hence a smaller “d”, wilMCMC is beyond the scope of this research paper that does not
delay the stopping moment as it is costlier to stop prematurelge a fully Bayesian approach.

by leaving uncorrected failures or undetected branches. Alsof, and#; are upper and lower constraints frif default sit-
given the denominator “a-b” is constant, a smaller testing casationd, — 6; = 1.0 is not selected. Now, let RE Remaining

per test-case “c” yielding a smaller "d”, will likewise delay thenumber of faults or coverage after the stopping action ané-RT
stopping moment as it is cheaper to experiment more. Moileemaining number of test cases after the stopping action. Then
over,a, 3, k;, X;, 62, andd, are input constants at each discreta order for the stopping-rule algorithm to be cost-efficient, the
step i, wherep and 3 are apriori parameters for the L&) below equation all in $ units should hold

in the Bayesian analysis, whebe< # < 1 denotes the posi-

tive-correlation-coefficient-like parametémnf LSD. In (4) and (RF)a < (RF)b + (RT)e (31)
(20), k is an unknown quantity. Note thaand k together define from which, the inequalities ford<”, “b>,” and “c>" can
the Poisson\, which is an important parameter of the modeNalidly be derived using simple algebra

A complete Bayesian analysis requires an inference on k as (RF)b+ (RT)c
well. Note that even though such analysis does not yield analyti- as —pE (32)
cally tractable results, it can easily be done using Markov Chain (RF)a — (RT)c
Monte Carlo (MCMC) methods. Since k is not described prob- b > T R®RF (33)
abilistically, but estimated using data, the approach followed is (RF)a — (RF)b
not fully a Bayesian, however an empirical Bayesian [43]. Also, CZ Ty (34)
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Graph 1. Plot of multistrategy stopping rule for DR5 at a minimum 80% confidence level.
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Graph 2. Plot of multistrategy stopping rule for DR5 at a minimum 90% confidence level.
IV. APPLICATIONS AND RESULTS step-look-ahead formula in (27) holds after at least two test

cases with nonzero failures or branch coverage. Second rows

RHS of (31) is the dollar amount of savings due to stoppinga each quadruplet again possess no specified CL, but testing is
action taken, by not executing the remaining test cases anddiywed to continue until or past a certain given minimal number
not correcting or detecting remaining faults (or branches). LH$§ test cases specified by the analyst and denoted by #TC due
of (31) is the dollar amount of potential loss if those remaining an availability of budget resources, when again (27) is first
faults or coverage were to be corrected after release. If RHS/isrified.
more than LHS in (31), then, it is a positive gain; otherwise, a To exemplify in Table Il, for DR5’s first row, stop at second
negative loss. Let #TE total number of test cases, #NQtotal  test-case after covering four branches when (27) is first veri-
number of coverage, and #M€ minimum coverage required, fied. For DR5’s second row, when CL did not apply due to
which is equal to CL times #NC. Below in Table | are the §inal number of failures or branches unknown, at least a typ-
varying cost-scenarios for Table Il that also indicates the subital prescribed minimal 1094 test cases were allowed to run
effect due to additional information on the rangefof at which the decisive (27) was also verified. Third and fourth

There are five quadruplets in Table II, each signifying on@ws in each quadruplet behave with respect to a confidence
data set, where each row in a quadruplet pertains to onel@fel of 0.80 (or 80%) and 0.9 (or 90%), respectively. Testing
the four sensitivity studies for six cost-scenarios. Note that theay halt on or after ensuring this specified minimal confidence
first rows in each quadruplet demonstrate a test environméenel of coverage, since the total number of failures or branches
where the #TC is not available with therefore no confidends available. #TC in rows 3 and 4 simply display the total pre-
level (CL) specified. Thus, the testing halts whenever the ongeribed number of test cases for each data set. For DR5s 3rd



$AHINOéLU: EMPIRICAL BAYESIAN STOPPING RULE 1435

TABLE |
Six COST SCENARIOS AND THEIR SENSITIVITY STUDIES FORTABLE ||

(1)as<: Given c=$100, b=$1000; what is the optimal a< to render MESAT cost-efficient?
(2)as : Given c=32000, b=381000; what is the optimal a< to render MESAT cost-efficient?
(3 b= Given ¢=$§10, a=$20000; what is the optimal b> to render MESAT cost-efficient?
(4 c=: Given a=85000, b=381000; what is the optimal c> to render MESAT cost-efficient?
(5)Saved: Given c=3500, b=81000, a=$2000, d=.5; what is the dollar amount saved ?
(6)Lost: Given ¢ =$100, b=$10000 a=$20000, d=.1; what is the dollar amount lost ?

row, testing stops at 100th test-case fafla = 0.8 after cov- was delayed somewhat if not considerably. Therefore a choice
ering 38 branches, exceeding tid& = 37, which is found by of « > 3 by Appendix | as in the goodness of fit tests is statis-
(CL) % (#NC) = 0.8 x 38 = 36.4. Also, “a” per undiscovered tically feasible and acceptable.

fault should be at most $26 950 according to the scenario (1), “b”As for the range of correlation coefficient of LSBif(f) =
should be at least $17 405 for the scenario (3), and “c” shouwld — 6, having a range of first 1.0 (uneducated guess) and then
be at least $15, in order for the stopping rule to be cost effectigradually dropping to a 0.5 does generally, if not always, have
Total savings is+$1 030 000 due to scenario “(5)Saved” with a subtle savings effect. This is why a Generalized Beta prior [5]
the assumed cost parameters as shown in Table Il and Screemdaks chosen to incorporate the expert opinion for the range of
For DR5s 4th row, withfCL. = 0.9, one stops at 2042nd test-casé@ and recognize the infeasibility of very low imposgdo lend
covering 42 branches to save$63 000. freedom to versatility rather than assuming the default case of

The body of test cases is essentially randomized as in the— #; = 1.0 flat when anything goes to avoid statistically
major assumption of Poisson or Bernoulli counting processemrealistic autocorrelation values 6f Note that in Appendix
Savings(+) or losseq —) are definitely a function of the cost|, the goodness of fit chi-square tests do not involve counts of
parameters involved in each scenario. Essentially, if the costaafro for the underlying LSD tested as the r.v. w for LSD takes
redeeming coverage (failure or branch) is high, then it is disagih nonzero valuesy = 1,2,3... as shown in (2) where the
vantageous to stop prematurely with respect to a stopping-ratenstant “a” is given by (3). Therefore, the blocks will show
algorithm, such as in MESAT. If the cost parameters are nibte frequencies of nonzero entities, where the zero count can be
known, then a sensitivity analysis can be conducted to observieand by subtracting from the total number of test cases for each
range of losses or savings. MESAT enjoys the benefit of a cattata set.
fidence level (CL) at will due to budget resources’ availability, Screen 1 displays the menu of the aforementioned param-
in addition to a one-step-ahead-criterion (27) controlled byeders, including the moving average with a default value of 1
divergence factor, “d.” Moreover, the MESAT algorithm effecand the goodness of fit test as in Appendix I. It has been found
tively accounts for the clumping of the coverage, as well as thteat for DR5, a moving average of 32 gives the best smoothing
positive autocorrelation among the observations in an aggreggteactice, which in turn calculates the corresponding exponential
MESAT is also flexible when the final number of coverage magmoothing factor of 0.0606 [47]. Variable cost data can also be
not be known as exemplified in Table I, where you allow a mirapplied, either with a linearly changing slope or by using forced
imal number of test cases to run. This method is also flexible fdata of the cost parameters ¢, b, and a, respectively, for each test
employing variable cost values, “a”, “b, ” or “c”,, at differentcase entered.
test cases across the spectrum, where some test cases may have
more weight than others.

Note that in Table IIdif(#) = 1 implies the usage of default
standard Beta prior, whered# (6) # 1 implies the implemen-  The contribution of proposed methodology lies in an empir-
tation of the generalized Beta prior treated. It is clear that as tival Bayesian approach to determine an economically efficient
economic stopping criterion “d” varies from a liberal (higherstopping rule in a CP setting that takes the accumulation of
to a conservative (lower) threshold, the stopping rule is shiftéailure clumps at each step into account in a software-failure (or
and postponed to a later test-case, if not the same. By a cbranch coverage) counting process. This work is a follow-up to
servative set-up, we mean a scenario where the stopping rulprisvious research done on PoissohSD as applied to com-
trying not to miss any failures and testing activity is likely tguter software testing [10]-[13]. This research also presents an
stop later, rather than sooner. The correlation behavior withatternative to the previous publication in that the compounding
each clump is represented by our choicexand3 in the light  distribution was assumed to be geometric (hence, PoiSson
of previous engineering judgment. Note that for> 3, like in  Geometric) due to its forgetfulness or independence property
a = 8 andg = 2 as imposed in the empirical Bayesian sensaf the clumped failures and where additionally the stochastic
in the examples of Table Il, the posterior r.v.éodlisplays a dis- time index was assumed to be in terms of CPU seconds [6]. This
tinctly left-skewed behavior. It has been observed that the stggaper also addresses the effort-domain problem where the unit
ping occurs earlier in this scenario. Howeverie= fasine.g., tests per calendar weeks are now replaced by test cases or test
a =5, 3 = 5, where the Beta distribution looks evenly symmetvectors as sometimes called in embedded-chips testing. How-
rical as opposed to the presently skewed ones sinses, the ever, in this paper, the compounding density is an LSD where
correlation among coverage in each test-case is not that strdagures are interdependent assumed to affect each other ad-
In the latter case, it has been observed that the stopping rule thersely by employing test cases as opposed to a continuous time

V. DIscussION ANDCONCLUSION
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TABLE I
STOPPINGRULES “S( - ) = s” OF DRL(#NC = 134 IN #TC = 200) oF Rows1-4,DR2(#NC = 92 IN #TC = 185) oFRows5-8, DR3(#NC = 44
IN #T'C = 100) oF Rows 9-12, DR4(#NC = 63 IN #TC = 200) oF Rows13-16, DR5(#NC = 46 IN #TC = 2176) OF ROWS 17—20WHEN o = 8
AND 3 = 2. (*). WITH THE TWO-STAGE APPLICATION, THERE IS ADDITIONAL +3$58 000 FOR DR5 AS CALCULATED IN TABLE VI. ALL OF TABLE II' S STOPPING
RULES SHOWN ARE ONE-STAGE TESTING RESULTS FORSIMPLICITY PURPOSES

#TC CL(HMC) 6,-0,=1. 0,-6=5 (Da< (Qas< (b= (4)c= (5)Saved (6)Lost

DRI
NA NA S(4)=38  S(2)=36
100 NA S(100)=94  S(100)=94

200  0.8(107) S(126)=108 S(125)=108 $1284 $6692 $19972 $1405 +$11500 -$252600
200 09(121) S(169)=132 S(167)=126 $2550 $32000 $19845 $258 +$8500 -$16900

DR2
NA  NA S(3)=23  S(2)=23
03 NA S(93)=52  S(93)=52

185 0.8 (74) S(131)=74 S(130)=74 $1300 $7000 $19970 $1333 +$9500 -$174600
185 0.9 (83) S(154)=90 S(152)=84 $2550 $32000 $19845 $258 +$8500 -$16900

DR3
NA NA S(5)=4 S(5)=4
49 NA S(49)=27  S(49)=27

100  08(35  S(70)=36  S(69)=36 $1375 $8500 $19963 $1067 +$7500  -$5000
100 09(40) S(81)=41  S(80)=41 $1633 $13667 $19937 $632 +$7000 -$1100

DR4
NA  NA S@)=19  S@)=19
100 NA S(101)=54 S(101)=54

200 0.8 (50) S(95)=51 S(95)=51 $1875 $18500 $19913 $457 +$41000 -$109500
200 0.9 (57) S(172)=57 S(171)=57 $1466 $10333 $19953 $857 +$8500 -$57200

DRS
N4 NA SQ2)=4  S(2)=4
1094 NA S(1094)=40 S(1094)=40

2176 0.8(37) S(100)=38 S(100)=38 $26950 $520000 $17405 $15 +$1030000* $127700
2176 0.9 (41) S(2042)=42 S(2042)=42 $4350 $68000 $19665 $119 +63000 -$26600

TABLE Il Model”[11],[12]. The number of failures or branches covered is
STOPPINGRULES USED IN CASE STUDY [49] independent from test-case to test-case. Test cases are random-
Orig | Original (without stopping rulc) ized, aqd npt in any specific order. However, the total number
SS1 | Sequential Sampling Fixed of contributions or coverage at each one-step-look-ahead check
SS2 | Sequential Sampling Variable assures the testing activity to stop due to a specified criterion
HW1 | Howden First Formula “d” for a set of specified cost parametetsand 3 imposed on
HW2 | Howden Second Formula the data set itself having learned from previous similar activity

BM Binary Markov Model
DL Dalal-Mallows Model
CP Compound Poisson Rule

or subjective guesswork. Then, the software analyst can apply a
subsequent testing strategy after stopping due to saturation ef-

SB Static Bayesian Rule fect with respect to an economic criterion, provided that a de-
DB Dynamic Bayesian Rule sired confidence level is satisfied in order to see the effect of the
CDB | Confidence-Based Dynamic Bayesian Rule fo||owing scheme.

Therefore, the same algorithm can be applied for a next
domain in terms of CPU seconds or hours or weeks. Recall tisatategy to judge where to stop. Hence a mixed sequence of
the dual of a time-dependent Poisson process is a time-indgategies can be employed for best efficiency to save time
pendent discrete Bernoulli process whose theory is sufficientind effort, i.e., overall resources. This is sometimes called
strong to handle the unit test-case phenomenon replacing thiixed strategy testing” [17]-[19], [41], [44]. It is shown by
unit test-week as a stochastic index where the response varidddaid and Wilson [38] that two stage sampling is superior
is the number of failures or branch coverage etc. [20]. This isfa single stage as illustrated in our examples given in Screen
line with the test-case based testing activity, where limiting di¢- and Graphs 1 and 2. It is most likely that by sacrificing
tribution of the sum of the nonhomogeneous Bernoulli variablesly small percentage of failure or branch coverage accuracy,
is the Poissof\) process, wherat = np, with n= number of one can literally spare wasted testing resources because of
Bernoulli trials and p= probability of detecting a failure or cov- persisting on the same futile testing strategy, on a journey to
ering a branch ([9] and [50], p. 304). the unknown. Also, as “d” gets smaller, usually stopping is

The stopping rule is applied to five effort-domain test datdelayed for fine-tuning. The saving of testing resources can
sets, namely DR1 to DR5 compiled by CS Labs at Colorade considerably crucial for large testing problems. This stop-
State University [17]-[19], [48], [49] and also to a DoD datging-rule method is therefore based on a Bayesian approach
set [41], [44]. This stopping-rule method is a new derivative aff updating the historical information experienced for future
the original publications on “The Compound Poisson Reliabilityecision-making. It assumes by PoissbnLSD (negative
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binomial, for a special case) model where the contributed
failure or branch coverage clumped in a test-case is positively
correlated. This implies that an occurrence of failure or branch
is likely to invite a next failure or branch. For further research,
a variety of informative priors can be considered as alternatives
to conjugate prior generalized Beta, 3) for 6 [5], [21].

Further, to provide readers with fundamental information
about what sorts of methods currently exist for a variety of
projects as listed in Table Il for the stopping-rule problem
this paper is dealing with, and to provide evidence that the
method proposed herein is a substantial improvement, lists of
comparisons over the other existing methods in circulation are
presented in Appendix Il. In summary, the proposed MESAT
is progressive and more data friendly in terms of its EDA that
other methods do not attempt to study for diagnosis. MESAT
is suitable for those data sets, which satisfy the goodness of
fit criterion of their clump-size distribution with respect to
a hypothesized LSD. This property of MESAT is therefore
discriminative, rather than fitting for all purposes. It is generally
true that the branch coverage data sets obey the assumptions
stated at least in this paper. This is why five out of five data
sets proved positive for the LSD assumed; hence good fits
are declared for NBD in natural consequence by (1) to (13)
in Section Il. MESATSs only seemingly subtle disadvantage is
the assumption of independent (randomized) test cases, which
is a requirement for the independent increments property of
the Poisson processes as the major underlying distribution of
counts in this research. However, as earlier explained in Section
I, the randomization assumption is a practical reality in testing
practice. Even if otherwise suspected, there is no universally
accepted solution of modeling the correlation of test cases for
each testing activity whose results are not known in advance by
the nature of surprise factor in software testing.

APPENDIX |

DIAGNOSTIC CHECKS FOR EXPERIMENTAL DATA SETS

ClusterSize Dr1 Dr2 Dr3 Dr4 Dr5

1 11 9 9 11 13

2 9 8 5 3 3

3 4 3 3 3 5

4 1 1 0 0 3

5 0 0 0 2 0

6 1 2 0 2 0

7 1 1 0 1 0

8 2 2 2 1 0

9 0 0 0 0 0

10 0 0 0 0 0
>11 2 1 0 0 0

Freq. Distribution of Cluster Sizes

Frequency
(Count)

Cluster Size

Decision GoodFIT alpha= 0.05
Pvalue= 0.14946 n= 32
a= 0.62133 theta= 0.8
X= P= E= 0= ChiSg=
1 0.497064 15.90605 11 1.513217
2 0.198826 6.362419 9 1.093426
3  0.10604 3.39329 4 0.108478
4 0.063624 2.035974 1 052714
5 0.040719 1.303023 0 1.303023
6 0.027146 0.868682 1 0.019851
7 0.018615 0.595668 1 0.274456
8 0.01303 0.416968 2 6.010041
9 0.009266 0.29651 0 0.29651
10 0.006671 0.213487 0 0.213487
11 0.018998 0.60793 2 3.187638
DataSet=_ dr1 ChiSqTot 14.54727
Decision GoodFIT alpha= 0.05
Pvalue= 0.116527 n= 27
a= 0.62133 theta= 0.8
X= P= E= o= ChiSqg=
1 0.497064 13.42073 9 1.456168
2 0.198826 5.368291 8 1.290148
3  0.10604 2.863089 3 0.006547
4 0.063624 1.717853 1 0.299975
5 0.040719 1.099426 0 1.099426
6 0.027146 0.732951 2 2.190344
7 0.018615 0.502595 1 0.492269
8 0.01303 0.351816 2 7.721385
9 0.009266 0.250181 0 0.250181
10 0.006671 0.18013 0 0.18013
11 0.018998 0.512941 1 0.462484
DataSet= dr2 ChiSqTot 15.44906
Decision GoodFIT alpha= 0.05
Pvalue= 0.078483 n= 19
a= 0.62133 theta= 0.8
X= P= E= o= ChiSg=
1 0.497064 9.444216 9 0.020894
2 0.198826 3.777686 5 0.395494
3  0.10604 2.014766 3 0.481786
4 0.063624 1.20886 0 1.20886
5 0.040719 0.77367 0 0.77367
6 0.027146 0.51578 0 0.51578
7 0.018615 0.353678 0 0.353678
8 0.01303 0.247574 2 12.40433
9 0.009266 0.176053 0 0.176053
10 0.006671 0.126758 0 0.126758
11 0.018998 0.360958 0 0.360958
DataSet= dr3 ChiSqTot 16.81826
Decision GoodFIT alpha= 0.05
Pvalue= 0.476983 n= 23
a= 0.62133 theta= 0.8
X= P= E= 0= ChiSqg=
1 0.497064 11.43247 11 0.01636
2 0.198826 4.572989 3 0.541067
3 0.10604 2.438927 3 0.129074
4 0.063624 1.463356 0 1.463356
5 0.040719 0.936548 2 1.207551
6 0.027146 0.624365 2 3.03087
7 0.018615 0.428136 1 0.763841
8 0.01303 0.299695 1 1.636417
9 0.009266 0.213117 0 0.213117
10 0.006671 0.153444 0 0.153444
11 0.018998 0.436949 0 0.436949
DataSet= dr4 ChiSqTot  9.592047

1437
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Decision GoodFIT alpha= 0.05 process of HDL verification, we first need to create failures as
Pvalue= 0.651303 n= 24 interruptions, where an interruption is an incident where one or
a= 0.62133 theta= 0.8 X .
X= p= E= o= Chisq= more new part of the model are exercised. Using branch cov-
1 0497064  11.92954 13 0.096055 erage as a test criterion, an interruption, therefore indicates one
2 0198826 4771814 3 0657889 or more new branches are covered. We set a probability for the
3 010604  2.544968 5 2.368275 int " te B and ch bound level of confi
4 0063624 1526981 3 1420965 interruption rate B and choose an upper-bound level of confi-
5 0.040719  0.977268 0 0.977268 dence C. Experimentally, we do not examine the hypothesis un-
6 0027146  0.651512 0 0651512 less the interruption rate becomes smaller than the preset value
7 0018615  0.446751 0 0.446751 B Wh lculate th ber of test patt ded t
8 001303 0312726 0 0312726 - When so, we calculate the number of test patterns needed to
9 0009266 0222383 0 0.222383 have at least C confidence of not having any new branch in the
1(1) g-ggggg; g-lgg;lg g g-lgg;l? next N patterns and run them. If an interruption occurs, we con-
DataSet=  dr§ ChisqTot 7.769886 tinue examining the hypothesis until we prove it and then stop.

Inthis approach, we assume that coverage items, or indeed inter-
ruptions are independent and have equal probabilities of being
APPENDIX Il covered. The rate of interruption is decreasing and we assume
COMPARISONS OF THEPROPOSEDCP RULE no interruptions will occur in the next N test cases; then, the ex-
WITH OTHER STOPPINGRULES pected probability of interruptions will be [27], [28], [34]

Almost all of the existing statistical models used to determine B
stopping-points stem from research results in software engi- By = t+T (A2.3)
neering [22], [34], [37]-[41], [44]. Many models have been pro- . o . .
posed assessing the reliability measurements of software swhere T is the last checked point in testing, and this leads to the

tems to help designers evaluate, predict, and improve the qua E?/ormulanon of (A2.1) as follows:

of their software systems [23]-[32]. However, software relia- N B N

bility models aim at estimating the remaining faults in a given C=1- H <1 - —) (A2.4)
. . t+7T

software program, which makes the direct use of such models t=1

not beneficial in estimating the number of remaining uncogyanches in behavioral models are usually covered in clumps
ered branches in a behavioral model since the remaining uncgyring the verification process. One could consider the event
ered branches are known. Instead, the estimation process &fRaving one or more new covered branches as an interrup-
be slightly modified to focus on the expected number of faultgon Thus, interruptions could be treated as failures with a
or coverage items in the case of behavioral model verificatioghosen upper-bound probability B where the hypothesis is not
within the next unit of testing time. Unfortunately, all the eXaxamined unless the interruption rate becomes smaller than
isting software reliability models assume that failures occur ofgig preset value B. The confidence of having an interruption is
at a time, except for the proposed MESAT approach that Usggn calculated based on the interruption rate. Nevertheless, it
a CP. Based on this assumption, expectations of the times Rgs assumed that interruptions are independent of each other.
tween failures are carried on. In observing new coverage iteR§me authors support that this is not correct [33], [34]. In fact,
in a behavioral model, branches are typically covered in clumpganches in behavioral models can be classified as dominant,
Besides, in the proposed MESAT tool, the positive correlatiofhg controlled branches where it is impossible to cover the
within a clump is taken into account. lower level branches without covering their dominant branches.
The confidence-based modeling approach [27], [28] takes aforeover, the sizes of the interruptions are not modeled in
vantage of hypothesis testing in determining the saturation [Qf7], [28] making the understanding of the branch behavior
the software failure. A null hypothest, is performed and later |ess jnformative. Sanping Chen and Shirley Mills developed a
examined experimentally based on an assumed probability digstistical Markov process or Binary Markov model [29], [34]
tribution for the number of failures in a given software. SuppOsgnere the probabilistic distribution assumptions are the same
that a failure has a probability less than or equal to B to occys confidence-based model except that failures are statistically
then we are at leadt— B confident thatH, is true. Similarly, dependent with a certain unknown correlation constant,

if the failures for the next period of testing time have the samgyain, if interruptions are correlated, then the probability of

cycles, we have a confidence of at le@sthat no failures will
happen, where P(O|N;B;p) = (1 —B)(1-B+p-BN-1  (A25)

N
C=1-(1-8B) (A2.1) " {hat makes the confidence @s= 1 — p(0|N;B; p). Chen and
ln(l——C). (A2.2) Mill's model still doesn't deal with the issue of clumping. Fur-
In(1 - B) thermore, the value of in this model is unknown, and authors
If C =0.95,B = 0.3, then by using (A2.2)N = 100. Thisisa experimentally assumed different values ranging from 0 to 0.9
single-equation stopping-rule method, which can be likenedand obtained different results. Thysneeds to be determined
a parallel system of N independent components whose reliab@ikperimentally.
ties are identical to be eaéh= B to satisfy an overall network  In Howden’s model, the assumption that failures or interrup-
reliability of C ([36], p. 265). To apply Howden’s model to thetions have a given probability B independently is erroneous.

N =
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TABLE IV
RESULTS OFSTOPPING RULE COVERAGE FORSTATIC CASE STUDY WHERE COVERAGE PER TESTING PATTERN CAN BE CALCULATED (i.e., COVERAGEPATTERNS)
WITHOUT USING COST FACTORS [49]

Model | Orig SS1 SS2 | HW1 | HW2 | BM DL Ccp SB DB CDB
Sys7 568 536 538 536 536 536 536 547 535 536 535
5428 | 1039 | 1858 927 969 1025 | 1235 | 6287 661 563 569
8251 161 73 73 79 79 81 75 112 74 73 67
8150 | 3259 | 3812 | 2769 | 2906 | 3033 [ 5712 | 9600 | 2275 | 2239 [ 2091
B01 200 177 142 128 155 128 128 135 128 128 128
8000 | 8169 | 3352 | 1010 | 1108 | 1211 1211 | 4200 | 1854 914 897
B04 223 220 218 206 214 214 219 217 199 202 202
8000 | 1028 | 5047 | 1894 | 2468 | 2557 | 1175 | 1710 631 674 742
B0S 259 234 251 251 251 251 252 253 232 233 233
8000 | 1079 | 7122 | 2092 | 2343 | 2431 | 5318 | 1080 808 745 744
B06 210 192 192 192 192 192 204 204 192 192 192
8000 | 8725 | 4618 | 1240 | 1407 | 1439 [ 7110 | 4500 673 708 708
B07 210 196 198 196 204 196 196 204 195 195 195
8000 | 8963 | 4660 | 1322 | 3904 | 1621 1132 | 4500 789 704 731
B08 274 268 268 263 263 273 273 273 273 273 273
8000 | 1244 | 6122 | 1392 | 1405 | 2283 | 8427 | 9600 | 2249 | 2033 | 1829
B09 260 234 251 234 251 251 252 253 232 233 233
8000 | 1079 | 7122 | 1512 | 2053 | 2470 | 5324 | 7800 809 734 735
B10 210 197 198 204 204 204 196 208 208 208 208
8000 | 9068 | 4660 | 1488 | 1711 | 1781 915 4200 | 2181 | 1488 | 1240
B11 223 220 218 206 214 214 219 217 199 202 202
8000 | 1028 | 5047 | 1894 | 2468 | 2557 | 1175 | 1710 631 674 742
B12 259 234 251 234 251 251 252 253 232 233 233
8000 | 1079 | 7122 | 1545 | 2085 | 2462 [ 5318 | 6900 808 745 744
B14 257 248 248 244 244 244 248 253 245 245 245
8000 | 1136 | 5712 | 1892 | 1900 | 1991 1618 | 2100 [ 1982 735 748
B15S 415 351 351 350 350 350 418 383 364 364 364
8000 | 1619 | 7906 | 1892 | 1900 [ 1991 [ 8000 | 9000 | 2080 | 2298 | 2010

Branches in an HDL model, as we know are strongly depeReisson counting process. It was previously introduced as
dent of each other. In fact, we can classify some branches whareoftware reliability model for the remaining number of
it is impossible to cover the lower level ones without coverinfailures’ estimation in 1992 [11] and later modified to in-
their dominants. Moreover, the clump sizes caused by the oorporate a version of the cost modeling proposed by Dallal
terruptions are not modeled in this study making the decisiamd Mallows in 1995 [6], [13]. Recently, it was formulated
of continuing or stopping the testing process inaccurate. Last, model the branch coverage process in behavioral models
this work does not incorporate the cost of testing or releasiiii/]-[19]. The idea is to compound potentially two probability
the product, and the goal of testing in the first place is not ondlistributions, for both the number of interruptions and the
having a high quality product but also minimizing the testingize of interruptions. The resulting compound distribution is
costs [34]. assumed to be the probability distribution function of the total
Dallal and Mallows [1] assumed that the total number of faihumber of failures, or coverage items, at a certain testing time
ures in a given software is a random variable with unknowpoint. The parameters of the distributions are also assumed
mean, and the number of failures occur during the testing timel@és be random variables based on the empirical Bayesian
a nonhomogeneous Poisson process with increm\gty. The estimation. For modeling the branch coverage process for
time needed for a single failure to occur is distributedyét, behavioral models, it is assumed that the number of inter-
which can be assumed exponential. This model has a better dgptions over the timeN(t), is a Poisson process with mean
scription for the failure process over the previous models so fay and the size of each given interruptiom;, is distributed
discussed, such as Howden and modified Howden’s in Chen aasla Logarithmic Series Distribution (LSD). See diagnostics
Mill's models. However, it still suffers from the problem of notof Appendix | for the justification of LSD of clump sizes.
having more than one interruption at a time, which reduces tike resulting compound distribution for the total number of
efficiency of the model when applying it to branch coverage efailures, which is the sum of the sizes, is also known as an
timation [34]. NBD, if the Poisson parametex is set to—klIn(1 — 6). The
Finally, the author of this manuscript,aBindjlu et al. CP model takes into account the clumps of the coverage items
[11]-[13], [17]-19] whereas applied a CP model that modela a statistical manner by updating the assumed probability
the branch coverage process of VHDL circuits utilizing thdistribution parameters in every test-case based on the testing
benefits of the “Dallal and Mallows” economic model byhistory. However, interruptions in the testing process are
reformulating it [6] and solving the clumping phenomenoassumed to be independent, mainly due to the “independent
of branches being covered in the testing process. This modelrements property” of the anchoring Poisson process. The
uses the empirical Bayesian principles for the compoundptbposed MESAT also incorporates a minimal confidence rule
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RESULTS OFCOST ANALYSIS FOR A DYNAMIC CA;—élgll'_EDYVWHEREa = $5000,b = $500,AND ¢ = $1 [44]

Model < higher Rank by savings/benefit lower >

Sys7: CP S§82 DB HWA1 HW2j BM S81 DU CDB| SB

-46504] -82575 -90280 -90644 -90686) -90742 -90756 -90952} -94786/ -94878

825l CP| BM HWA1 HW2j DU SB DB S81 SS2 CDB

-148600( -281633] -290269| -290406 -311212] -312275 -316739 -317759] -318312 -343591

BO1: SS81 HW2 SS2] CP| CDB DB HW1 BM| DU SB

-31669] -133584] -184352] -216700] -244897| -244914] -245010{ -245211] -245211] -245854

B04: SS1 S82 DU HW2 BM CP| HW1 DB CDB| SB

56218 52453 50245 37032 36943 35900 1606 -15174 -15242]  -28631

BO5: DY CP| HWA1 HW2j BM SS82 CDB] DB SB SS1

43182 42200 41908] 41657 41569| 36878 -37744 -37745| -42308]  -43295

B06: CP| Dy SB| DB] CDB HWA1 HW2 BM SS2 SS1

48500 45890 -1673 -1708 -1708 -2240 -2407| -2439 -5618 -9725

BO7: HW2] CP| SS2 DY HW1 BM| DB CDB SBj SS1

49096 48500 21340 15868 15678 15379 11796 11769 11711 8037

B08: CDB] DB SB BM DL CP SS2 SS1 HW1 HW2

73671 73467 73251 73217 67073 65900 46878 40553 29108 29095

B09: CP| DY HW2j BM SS2) HW1 DB CDB SB| SS1

40700 38676 37447 37030 32378] -38512 -42234 -42235| -46809)  -47795

B10: CDB DB SB] CP| HWA1 HW2 BM SS2 DU SS1

69760 69512 68819 66800 51512 51289 51219 21340 16085 12432

B11: SS1 SS2 DU HW2 BM| CP| HW1 DB CDB| SB

56218 52453 50245 37032 36943 35900 1606 -15174 -15242]  -28631

B12: CP| Dy HW2| BM SS2 HW1 CDB DB SB SS1

46100 43182 41915 41538 36878 -34045 -37744] -37745| -42308]  -43295

B14: CP| Dy SS82 S81 DB| CDB SB HW1 HW2] BM

41000 37882 33788 28133 25265 25252 24018 19608 19600 19509

B15: by CP| CDB SB] DB HW1 HW2] BM| SS2) SS1

13498 -73000( -151510| -151580] -151798] -214392 -214400f -214491] -215906/ -224190

in addition to applying the one-step-ahead formula of (27) farew value ofy, therefore, becomes#+ = v1In(A), whereA is
assessing whether to stop or continue economically. the coverage increase achieved in the previous test strategy The
All the previously discussed stopping rules assume that thalue ofy, however, remains the same\f< e. This type of sta-
failures or interruptions are random processes according teistical modeling doesn’t use any priori probability distribution
given probability distribution. A sequential sampling techniquir the data provided. This is one reason why the sequential sam-
that doesn’tinvolve any assumptions on the probability distribpting models are widely used in many testing areas [33], [34].
tions for the failure process was presented in [25]. Recently, tHewever, the cost of testing is not modeled in making the stop-
technique is applied to VHDL models in determining the stoging decision. Moreover in the opinion of this manuscript’'s au-
ping points for a given testing history of branch coverage [30hor, the stopping point determined by the sequential sampling
The model evaluates the stopping decision based on three keydel is very sensitive to the value chosen during the testing
factors: the discrimination rati¢r), the supplier risK«), and process. (A2.6) is an equation subject to an abusive use for pur-
the consumer risk3). If the number of cumulative coverage aposes of experimental validation. Authors of this approach [30]
timetis X(t), then the testing process should be stopped at have earlier suggested values foup to 250, whereas Musa’s
[25] text only usesy in the order of 5 or 10. Excessive values
In (%) —In(v) of v pose a contradiction and threat to the Wald’s SPRT theory
1=~ (A2.6) for sequential testing in terms of type | (whose probability is
«) and Il (whose probability ig}) errors. The same holds true
The stopping decision strongly depends on the valugrafich  for o which authors in their related paper have suggested to be
more thane and 3. The decision doesn'’t incorporate any costt = 0.50, a relatively exaggerated value compared to Musa’s
model of the testing process. In [25], the variable was modified = 0.10. Singpurwallaet al. [37], [40], [45], McDaid and
with respect to testing strategies such that if higher coveragélson [38] and Ross [39] have developed their own stopping
were achieved in the previous test strategy, the value of is imdes with differing statistical assumptions on one- or two-stage
creased inthe currenttest strategy in order to decrease the expesting schemes. However, because these techniques have not
tation of achieving more coverage in the current strategy. Theen experimented on “hardware or silicon testing” with respect

X(t) =
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TABLE VI

RESULTS OFDR5 MIXED STRATEGY STOPPING RULE AT A MINIMUM 80% GONFIDENCE LEVEL
Week Lambda k w X E(X) e (X) Percentage
1 1.0 0.57711 4 4 4.391 N /A 8.7
5 0.4 0.20036 2 6 2.337 0.936 13.04
6 0.5 0.2266 4 10 3.325 0.988 21.74
7 0.57143 0.24445 3 13 4.125 0.8 28.26
8 0.625 0.26348 1 14 4.588 0.463 30.43
9 0.66667 0.26808 3 17 5.285 0.697 36.96
10 0.7 0.27024 3 20 5.957 0.672 43.48
34 0.23529 0.08512 3 23 2.432 0.372 50.0
35 0.25714 0.0894 4 27 2.872 0.44 58.7
43 0.23256 0.07859 3 30 2.769 0.348 65.22
44 0.25 0.08385 1 31 3.017 0.248 67.39
52 0.23077 0.0767 1 32 2.849 0.223 69.57
66 0.19697 0.06435 2 34 2.539 0.232 73.91
76 0.18421 0.0597 1 35 2.423 0.174 76.09
91 0.16484 0.05299 1 36 2.214 0.153 78.26
99 0.16162 0.05124 2 38 2.242 0.18 82.61
100 0.16 0.05073 0 38 2.221 -0.022 82.61

Stop at X(100) = 38.0
Coverage = 82.6086956521739 %

Cost Analysis:

Cost of correcting all 46 errors by exhaustive - testing would have been
46000.00%

Cost of correcting 38 pre - release errors using MESAT is 38000.00$
Savings for not correcting the remaining 8 by using MESAT is 8000.00$

Cost of executing all 2176 test cases by exhaustive - testing would have
been 1088000.00%

Cost of executing 100 test cases by using MESAT is 50000.00$%

Savings for not executing the remaining ( 2176 - 100 ) = 2076 test cases
is 1038000.00%

Results of using MESAT are:

Savings for not correcting the remaining 8 errors by using MESAT is
8000.00$

Plus the 1038000.00$ saved for not executing the remaining 2076 test cases
equals a total savings of 1046000.00$

Minus the 16000.00$ post - release cost of correcting 8 errors not covered
( 8 x 2000.00% )

Total savings for using MESAT is 1030000.00$

strategy: 1
Stop at X(100) = 38.0
Coverage = 82.0%
Total Coverage = 82.0 %
Total Covered = 38
strategy: 2
Stop at X(1959)=7.0
Coverage = 88.0%
Total Coverage = 97.0 %
Total Covered = 45
Strategy 1 Cost Analysis Summary: Total savings for using MESAT is 1030000.00$
Strategy 2 Cost Analysis Summary: Total savings for using MESAT is 58000.00%

Insufficient data for Strategy Number: 3

to branch coverage, no comparative results are available in thé&or a more thorough comparative case study, research done
engineering literature in terms of merits. by Hajjar and Chen was utilized [22], [49], where nine different
The above arguments suggest that the propossmpping rules, shown in Table Il were applied to 14 different
MESAT employing both a minimal confidence rule and/HDL models [44]. The results of the stopping-rule determina-
one-step-look-ahead formula within a single or multistagens are shown in Table IV, including results without the use of
testing scenario to justify a decision taken whether to continaay stopping rule. This stopping-rule comparison portrays the
or stop testing, has the imminent advantages of recognizing BB method as having one of the lowest efficiencies based on a
clumping effect in coverage testing as well as incorporating tinaive “coverage per testing pattern” index, which is defined as
economic criteria in addition to its data discriminative traits bthe number of branches covered divided by the total test patterns
conducting EDA through diagnostic checks. It is imperativesed. Despite their index rating, CP found the most faults for 10
that a diagnostic check, such as in Appendix |, be undertakeut of the 14 VHDL models, while ranking second in B15, third
if similar exhaustive test results are available. This is necessamyB01 and fourth in BO4. Furthermore, no economic analysis
to justify the usage of the LSD model for the clump sizes, lzas been performed to illustrate the monetary gain or loss asso-
model that eventually leads to the NBD assumption for the toteiated with the various stopping rules. Let us now use the cost
number of coverage by default in the wake of the expressibenefit criterion of (31) in the main paper, where RF is the re-
A = —kIn(1 — ) = k1nq assumed to hold true. maining number of failures uncovered and RT is the remaining
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TABLE VII
RESULTS OFDR5 MIXED STRATEGY STOPPING RULE AT A MINIMUM
90% QONFIDENCE LEVEL

strategy: 1
Stop at X(2042) = 42.0
Coverage = 91.0%
Total Coverage =91.0 %
Total Covered = 42
strategy: 2
Stop at X(86) =4.0
Coverage = 100.0%
Total Coverage = 100.0 %
Total Covered = 46
Strategy 1 Cost Analysis Summary: Total savings for using MESAT is 63000.00$
Strategy 2 Cost Analysis Summary: Total savings for using MESAT is 0$
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