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This article, beyond presenting a spectrum of network reliability methods studied
in the past decades, describes a scalable innovative ‘overlap technique’ to tackle
large complex networks’ reliability evaluation difficulties, which cannot be handled
by straightforward reliability block diagramming (RBD) techniques used for the
simple parallel-series topologies. Examples are shown on how to apply the overlap
algorithm to compute the ingress-egress reliability. Monte Carlo simulations
demonstrate the methods discussed. (1) Static (time independent), (2) dynamic
(time dependent) using a versatile Weibull distribution to represent the multiple
stages of network components from infancy to useful life period and to wear-
out, and (3) multistate versions to include derated behavior beyond conventional
working and nonworking states, are illustrated for calculating the directional
source-target (s-t) reliability of complex networks by using the Java software
ERBDC: Exact Reliability Block Diagramming Calculator .  2010 John Wiley & Sons, Inc.
WIREs Comp Stat

Network reliability is the probability that a net-
work with all its subnetworks and constituting

components will successfully complete the task it is
intended to perform under the conditions encoun-
tered for the specified period of time defined between
a source and a target.1–11 Reliability analysis is the
process of quantifying a system’s ingress–egress [or
source–target (s–t) at will] serviceability by examining
the dependency relationships between the components
that comprise the system. Analysis is essential when-
ever the cost of failure is high.12,13 Modeling and
simulation allow analysts to determine weak spots
in the systems so that the maintenance engineer can
inventory a backup list of components. The reliability
analysis focuses on the computer network compo-
nents and the connections between them to determine
the overall system reliability as well as the reliabilities
between any two individual nodes in the network.
Network reliability computations are similar to those
developed for industrial applications, but there are a
few exceptions. In industrial applications, all of the
components in the system are usually considered crit-
ical to the overall function of the system. However,
in network applications, the target communication

∗Correspondence to: msahinog@aum.edu
1Informatics Institute, Auburn University, Montgomery, AL 36124,
USA
2Computer Science Department, Troy University, Montgomery, AL
36104, USA

DOI: 10.1002/wics.81

between two nodes may select few components in the
system due to redundancy.11,14,15

Currently, most published educational materials
cover methods for determining system reliabilities in
networks that can be expressed as pure parallel–series
systems or reducing a complex topology to a paral-
lel–series one using a conditional ‘keystone’ method.10

However, as experience proves, these ready-to-cook
networks with small sizes rarely occur outside
textbooks and classrooms. These computations prove
impossible or mathematically unwieldy when applied
to real complex networks and are therefore useful
only to teach basic reliability concepts.11 The graphi-
cal screening ease and convenience of reliability block
diagramming (RBD) algorithms16 is advantageous
for planners and designers trying to improve system
reliability by allowing quick and efficient intervention
that may be required at a dispatch center to observe
routine operations and identify solution alternatives
in case of a crisis. The Boolean decomposition
and binary enumeration algorithms17–19 are outside
the practical scope of this article because of large
networks we will work with. The algorithm through
a user-friendly and graphical Java applet computes
the reliability of any complex parallel–series network.
Furthermore, the coded topology can be transmitted
remotely and then reverse-engineered to reconstruct
the original network diagram for purposes of securing
classified information and saving space.12,13,15,20–23,25

This, too, can be applied to security-related input
for wired or wireless systems. All current exact
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computational algorithms for general networks
are based on enumeration of states, minpaths, or
mincuts.2,3 Network reliability estimation has been
used successfully for nontrivial-sized networks using
neural networks and heuristic algorithms in Refs 7
and 12 as well as employing a concurrent error detec-
tion approach by the coauthor of earlier research.23

Other researchers have used efficient Monte Carlo
simulation.4,5 Bounds such as Jan’s upper bound,
used to reduce the complexity of computations, are
approximate.3 A thorough analysis is by Colbourn.1

The next sections demonstrate recent progress in s–t
network reliability field with software tools.14,15,24–27

OVERLAP TECHNIQUE
TO CALCULATE COMPLEX
NETWORK RELIABILITY

With the emergence and maturity of reliability
engineering over the past six decades since the space
age started, there is a growing need to efficiently
produce accurate reliability models for increasingly
larger and more complex systems. For purely
parallel–series networks, there are simple and widely
available algorithms to mathematically determine
exact reliabilities between a given ingress and egress
node. For complex networks, however, there is very
little in the way of freely available algorithms that
are simple, accurate, efficient, and scalable. This
article discusses the discovery and implementation of
one such ‘overlap’ algorithm by treating nodes and
links in (1) single-state static, (2) multistate static,
and (3) single-state time-dependent dynamic with a
Weibull failure probability density function.11,14,15,27

Every network can be represented, in its simplest
form, as a binary state chart representing all of the
possible states and their respective reliabilities, whose
sum is always 1. The reliability from one node to
another is the sum of all states that constitute at
least one path of sequentially connected nodes that
form an unbroken link between the source node and
the target node. The source and target nodes can be
interchanged with no impact on the final result.

Example 1. Consider the five-node sample
network in Figure 1. Each node has a reliability of
0.9, meaning that 90% of the time it is up (operating,
functional, working, etc.), whereas 10% of the time it
is down (not operating, dysfunctional, not working,
etc.). The state diagram would look like the following.
The ‘1-5 probability’ column is only populated in
25 = 32 states that constitute a complete link between
node 1 and node 5, where the rest are left out with
zero results in Table 1.

TABLE 1 Five-Node/Two-Path Static Network State
Enumeration Table for ‘1 − 5′ in Figure 1

Node

1 2 3 4 5 Probability 1–5 Probability

1 0 1 0 1 0.00729 0.00729

1 0 1 1 1 0.06561 0.06561

1 1 0 1 1 0.06561 0.06561

1 1 1 0 1 0.06561 0.06561

1 1 1 1 1 0.59049 0.59049

Total reliability 1 0.79461

Note that this returns the same results as stan-
dard parallel–series equations that can be performed
manually:

RT = R1 × {1 − [(1 − R3) × (1 − R2 × R4)]} × R5

RT = 0.9 × {1 − [(1 − 0.9) × (1 − 0.9 × 0.9)]}
× 0.9 = 0.79461. (1)

Using a binary state chart works fine for very small
networks, but the exponential nature of the underlying
data render it impossible to use for larger networks.
A relatively small 10-node network would require
10 column and 210 (1025) rows (10,250 total cells),
whereas a still small 20-node network would require
20 columns and 220 (1,048,576) rows (20,971,520
total cells). This is too much data to handle efficiently
in the calculation of small network reliabilities. These
state charts can be, however, useful in analyzing how
individual paths affect each other while generating
reliabilities as a system.

For instance, consider the same five-node
network in Figure 1. We can quickly deduce that
the two unique paths through the system from node
1 to node 5 are {1→3→5} and {1→2→4→5}. More
on algorithmically determining paths will follow. If
all of the nodes in either path are up, there will be a
continuous connection between the source and target
nodes. If we map the two paths in the state diagram
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FIGURE 1 | Example 1: five-node/two-path static network.
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TABLE 2 Five-Node/Two-Path Static Network State Table
with Useful Paths for Figure 1

Node

1 2 3 4 5 Probability 1,3,5 1,2,4,5

1 0 1 0 1 0.00729 0.00729

1 0 1 1 0 0.00729

1 0 1 1 1 0.06561 0.06561

1 1 0 1 1 0.06561 0.06561

1 1 1 0 1 0.06561 0.06561

1 1 1 1 1 0.59049 0.59049 0.59049

Total reliability 1 0.729 0.6561

below (all of the states where node 1 is down have been
hidden to reduce the size), we find that the sum of two
reliabilities (=1.385) is exactly 0.59049 greater than
the desired result. This is the probability of overlap
between the two paths. The overlap is found by taking
a union of all the nodes in both paths. This union is
simply a mathematical state overlap and does not need
to represent a path across (see Table 2).

Unfortunately, reliability calculation for com-
plex networks is not as simple as subtracting the
overlaps between unique paths. When there are more
than two paths, many states may overlap across mul-
tiple paths. When subtracting overlaps, any state that
has been subtracted more than once will have to be
re-added to the final result. Note: s(source), t(target).

Generating Minimal Paths
This practice into the binary nature of reliability
networks and the overlapping characteristics of path
reliabilities lends itself to the idea of a structured
algorithm that could compute a finite set of minimal
paths from ingress to egress. One considers the indi-
vidual reliabilities of each path, and programmatically
adjusts for overlaps. The first step, determining a set
of minimal paths, is of utmost importance regarding
efficiency and scalability. Theoretically, we could
consider the same exact path multiple times, and the
algorithm would determine that a duplicate path is a
complete overlap. We could then systematically sub-
tract all redundant state reliabilities. However, after
brief analysis of the problem pattern, it is apparent
that path overlap will have to be computed triangu-
larly. It follows then that any duplication of initial
paths can affect the total algorithm time exponentially.

Finding the set of minimal paths across a net-
work from one node to another can be accomplished
using a simple stack. As the algorithm will step
through node connections in sequence, it is helpful
to have the networked nodes uniquely ordered to

prevent confusion as to which nodes have already
been addressed and which node should come next
at any given point along the algorithm. Ordering
can either be accomplished by alphabetic sorting, if
the nodes have been uniquely named beforehand, or
simply assigning an abstract index (1, . . . , n) to each
node before beginning. The order of the nodes is not
important as the set of minimal paths generated will
be the same regardless of order. Start by pushing the
start node onto the initially empty stack and repeat
the following algorithm on the top stack node until
the stack is again empty.

1. If the top node connects directly to the target
node:

a. Push the target node onto the stack.

b. Save the current stack as a new minimal
path (the bottom node is the start node
and represents the start of the minimal path,
whereas the top node is now the target node
representing the end of the path).

c. Pop the top two nodes (the target node and
the node that links directly to it) off of the
stack.

2. If the top node does not connect directly to
the target node, push the next connecting node
onto the stack. The next connecting node can be
determined by the following logic:

a. No node that is already in the stack is a
candidate. This would cause a recursion issue
as paths could fall into a recurring loop that
grows infinitely in size without ever reaching
the target node.

b. If the previous action was a push action (i.e.,
the current node was newly pushed onto
the stack) choose the lowest ordered node
connected to the top stack node that is not
already in the stack.

c. If the previous action was a pop action (i.e.,
one of the nodes connected to the top node
had finished its iterations and was removed)
choose the next ordered node connected to
the top stack node after the previously popped
node.

3. If the top node does not connect directly to the
target node and no new connecting node was
found to push onto the stack, pop the top node
off the stack.

Using the simple network depicted below in
Figure 2, it is possible to walk through the minimal
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FIGURE 2 | Example 2: six-node network without
including link reliabilities (= 1.0) and (s = 1, t = 6)
solution.

path algorithm step by step to find the set of minimal
paths across the network starting from node 1 and
traversing to node 6.

Step 1. Add the start node to the stack.

1

Step 2. The top node (1) connect to both nodes
2 and 3 and neither one is already in the stack. As the
last action was a push action, push the lowest order
node, 2, to the stack.

1 2

Step 3. The top node (2) connects to nodes 1 and
4, but 1 is already in the stack, so push node 4 onto
the stack.

1 2 4

Step 4. Because the top node (4) links directly to
the target node (6), push 6 onto the stack and save the
current stack as a minimal path. Then, pop the top
two nodes off of the stack. Note: even though there are
still possible paths through node 4 (e.g., 1,2,4,3,5,6),
any such path will be short circuited by 1,2,4,6 and
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thus will not need to be considered as a minimal path.
Therefore, node 4 can be popped from the stack.

1 2 4 6 Add this to the list of minimal
paths.

1 2 Pop the last two nodes off the stack.

Step 5. Because node 4 was just popped from the
stack and the top node on the stack (2) does not link
to any nodes higher than 4, pop node 2 off the stack.

1

Step 6. Node 2 was just popped off the stack; the
next higher node than 2 connected to the top stack
node (1) that is not already in the stack is node 3.
Push node 3 onto the stack.

1 3

Step 7. The top node (3) connects to nodes 1, 4,
and 5, but 1 is already in the stack, so push the lowest
(4) remaining node onto the stack.

1 3 4

Step 8. The top node (4) connects directly to
the target node (6), push 6 on the stack and save
the current stack as a minimal path. Then, pop the
top two nodes off the stack. Note: at this point, it is
clear to see that if node 4 did not link directly to the
target node, node 2 would have been the first node
to be pushed onto the stack. However, from node
2, there would be no way to link to the target node
(6) without passing through any nodes already in the
stack. In this case, the process would still need to
consider node 2 to insure total algorithm inclusion.
In small networks such as this example, it is easy to
visualize dead ends, but in a very large network, they
may not be so clear and taking shortcuts could result
in missed paths and thus incorrect results.

1 3 4 6 Add this to the list of minimal
paths.

1 3 Pop the last two nodes off the stack.

Step 9. Because node 4 was just popped off the
stack, the next highest node connected to the top node
(3) that is not already in the stack is node 5. Push
node 5 on to the stack.

1 3 5

Step 10. The top node (5) connects directly to
the target node (6), push 6 on the stack and save the

current stack as a minimal path. Then, pop the top
two nodes off the stack.

1 3 5 6 Add this to the list of minimal
paths.

1 3 Pop the last two nodes off the stack.

Step 11. Node 5 was just popped off the stack
and there are no higher nodes connected to the top
node (3), pop node 3 off of the stack.

1

Step 12. Node 3 was just popped off the stack
and there are no higher nodes connected to the top
node (1), pop node 1 off of the stack.

Step 13. The stack is now empty; the algorithm
is complete. The minimum paths generated above are
as follows:

1 2 4 6

1 3 4 6

1 3 5 6

The core algorithms presented here never
consider link reliabilities. When link reliabilities are
required, think of each link as a node itself. Of
interesting note is, when considering link reliabilities,
steps that would have resulted in an immediate link to
the target node (i.e., steps 4, 8, and 10 in the minimal
path example), now have opportunities to venture
down additional paths. Networks with link reliability
tend to have several more minimal paths than their
counterparts without link reliabilities. See Example 2
in Figure 2 to observe all above.

Overlap Method Algorithm
Now that the minimal set of paths has been generated,
the overlap method can be executed. The overlap
method can be implemented with a finite array of
stacks. Each stack will be comprised of one or more
sets {S1, . . . , Sn}. Each set will be comprised of one
or more nodes {N1, . . . , Nn}. The initial stack will
be the set of minimal paths generated across the
network from the ingress to the egress nodes. Stacks
will create additional stacks recursively per the logic
below. A single reliability will be maintained (referred
to as the global or working reliability), and each
stack will increment or decrement the global reliability
accordingly. The initial global reliability is 0.

1. Determine if this stack will be added to or
subtracted from the final reliability. If this is the
root stack (the set of minimal paths generated for
the network), this stack will be added; otherwise
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the operation will be the opposite of the calling
stack.

2. Eliminate any complete overlaps from the stack.

a. For each set Si in S1, . . . , S(n − 1):
i. For each set Sj in S(i + 1), . . . , Sn:

1. If Si{} ∩ Sj{} = Si{}, remove Sj from
the stack.

2. Else if Si{} ∩ Sj{} = Sj{}, remove Si
from the stack.

3. If there is only one set remaining in the stack:

a. Add or subtract (see Step 1) the product of the
sole set. The product of a set is the product
of the reliabilities of the nodes in the set
(N1 × N2 × · · · × Nn). Return to the calling
stack. If this is the root stack, the algorithm
is complete.

4. For each remaining set in the stack {S1,. . .,
Sn}, add or subtract (see set 1) the product of
the set. The product of a set is the product
of the reliabilities of the nodes in the set
(N1 × N2 × · · · × Nn).

5. If there are more than one set in the stack:

a. For each set Si in S2, . . . , Sn:
i. Create a new empty stack.

ii. For each set Sj in S1, . . . , S(i − 1).

1. Add a new set comprised of nodes
Si{} ∪ Sj{} to the new stack. Note:
this is a proper union, not a union
all. If a given node occurs in both
Si and Sj, it should occur only
once in the new set.

iii. Perform the overlap algorithm on the
new stack.

6. Return to the calling stack. If this is the root
stack, the algorithm is complete.

Example 3. For the complex network in
Figure 3, if all the nodes are assumed to be 0.9; using
‘overlap’ algorithm:

IN − OUT(s = 7, t = 8) = {7}[{1 − 4} + {1 − 5}
+ {2 − 5} + {3 − 5} + {3 − 6} − {1 − 4 − 5}
− {1 − 2 − 5} − {1 − 2 − 4 − 6} − {2 − 5 − 6}

− {1 − 3 − 4 − 6} − {1 − 3 − 5 − 6}
− {2 − 3 − 6} + {1 − 2 − 4 − 5 − 6}
+ {1 − 2 − 3 − 4 − 6}
− {1 − 2 − 3 − 4 − 5 − 6}]{8}. (2)

IN − OUT(s = 7, t = 8) = (0.9){(5)(0.92) − [(4)(0.93)

+ (3)(0.94)] + (4)(0.95) − (0.96)}(0.9)

= (0.9){(5)(0.81) − (4)(0.729) − 3(0.6561)

+ 4(0.59049) − 0.531441}(0.9)

= (0.9){4.05 − 4.8843 + 2.36196

− 0.531441}(0.9)

= (0.996219)(0.81) = 0.80694. (3)

MONTE CARLO AND DISCRETE
EVENT SIMULATION TO
DEMONSTRATE THE OVERLAP
METHOD

The component reliabilities will be simulated using
a Bernoulli probability density function (pdf) given
the static (time-independent) input data ri for each
component. That is, draw a random deviate, ui,
from the unity uniform (0,1). Lay out a network
composed of these ri. Announce it a passage (success)
if 0 < ui < ri. If not, component is a failure. Then
tally one if there is a working connection between
the ingress and egress components for this iteration.
In iteration 2, apply the same method as in iteration
1. Tally if there is a connection between the source
and target. Once you reiterate this routine, say with
n = 100,000 runs for the network destination, and
calculate the ratio of successful arrivals of service from
source (ingress) to target (egress). Compute the overall
simulation average by dividing the number of service
connections by n. The links will also be simulated
with respect to a Bernoulli pdf for P (=probability
of being operative) taken as a constant. Generate a
Bernoulli random deviate; that is, draw a uniform ui,
if 0 < ui < P, then it is a hit (success) for the link.
Therefore, for example, you can advance through the
link from 1 to 2. If link reliability is perfect then do not
generate anything, simply advance to the neighboring
component. The number of times out of n trials to
advance from s to t with all successful hits will yield
the output.15,26,27

Using Poisson counting process, for time-
dependent discrete event simulation technique, assume
the rates for each component, such as λ = (mean
sojourn time)−1. Let us assume that the probability of
‘up’ for a component, such as 0.9 denotes 9 time units
out of 10 are operating and 1 time unit out of 10
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not operating. The reciprocals of the means yield the
rates: λ (failure rate) = 1/9, and µ (repair rate) = 1/1.
Thus, FOR = λ/(λ + µ) = (1/9)/[(1/9) + (1/1)] =
(1/9)/(10/9) = 0.1. Using these rates of sojourn to
generate times to failure with a negative exponential
pdf, one travels from component to component.
If both sending and receiving ends operate at the
same time, it is a successful connection. How many
successes out of how many ‘n’ trials, such as from
s = 1 to t = 19 as in Figure 4 is the solution.

Slower (due to housekeeping records of clock
time) dynamic simulation result is almost equal to
that of the static Monte Carlo, which is easier to
program. The overlap method has advantages of being
100% accurate and faster compared with simulation.
However, when it comes to larger networks with more
than 30 nodes and 50 links, the storage and time
become a problem. Examples 4 and 5: see Figures 4
and 5 for details regarding a 19-node/32-link and a
52-node/72-link complex network.

MULTISTATE SYSTEM (MSS)
RELIABILITY EVALUATION
When modeling real-life reliability systems, it does
not always suffice to present an ‘on or off only’

paradigm. Most live systems such as electric power
networks contain components that can be not only
fully operational or completely nonfunctional but also
a range of in-between states of marginal utility such
as derated or degraded. It is sometimes inadequate to
describe a node’s states with only UP (fully operating)
and DOWN (fully deficient) but with more states
like DERATED (partially operating close to full) or
even DEGRADED (less partially operating close to
DOWN) or more downgraded states. Components
in these states are functional but not operating at
peak capacity. In computer networks, these conditions
could be caused by network devices that are currently
experiencing extraordinary computing loads. Routers
sometimes are capable of trafficking data packets but
only in limited counts. In electric power systems,
they are the hydroelectric plants or turbines, etc. with
less than full capacity because of lack of water or
insufficient fuels such as coal, lignite, or gas.

Let us examine briefly a simple multistate
network. For this example, we will consider a three-
state system; UP (fully operational), DER (derated
or partially operational), and DN (down and fully
nonoperational). Each state has a reliability value
between 0 and 1 representing the probability that the
component will be in that state at any given time. The
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FIGURE 3 | Example 3: eight-node/nine-path static network with s = 7, t = 8.
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FIGURE 4 | Example 4: 19-node (s = 1, t = 19) complex network with Monte Carlo simulation (83 s) and analytical results (50 s), both 0.784
with simulation taking 33 s more.
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FIGURE 5 | Example 5: Simulation for (s = 1, t = 52) with 72 links is 0.558 in 17,119 s. The faster analytical result is 0.556 in 18.034 s in 0.1% of
the much longer simulation time. The more simulation runs are conducted, the closer the analytical and simulation results will converge to each other.
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sum of the reliabilities of the states must always equal
1. In this respect, what we referred to as static relia-
bility in the previous sections is really two-state, UP
and DN. The UP probability was stated while the DN
probability was left unstated and assumed at {1—UP}.
In the same fashion, when we depict multistate reli-
abilities we indicate the UP value first, followed by
the remaining functional states in operational order.
We omit the DN state, again leaving it assumed. For
example, if a component is UP 70% of the time,
DER 20% of the time, and DN the remaining 10%,
we would write {0.7, 0.2} to indicate the component
reliability summary. It is imperative that these states
add up to unity (1.0). Let us take the situation where
there are three states, UP, DER, and DN, and study
for simple series and active parallel systems.

Simple Series System with Singly Derated
States
A simple series system with fully operating and derated
states is shown in Figure 6 in Example 6.

Our goal is to calculate the simplest series system
reliability of a primitive example, where the node has
three states, with probabilities, P(UP) = 0.7, P(DER)
= 0.2, and P(DN) = 0.1 in Figure 1. We use two
approaches:

Longer State Enumeration Approach
In this example, there can be SN = 32 = 9 combina-
tions, where S is the number of states and N is the
number of nodes. S = 3 and N = 2 as follows:

P(UP and UP) = 0.72 = 0.49

P(UP and DER) = (0.7)(0.2) = 0.14

P(UP and DN) = (0.7)(0.1) = 0.07

P(DER and UP) = (0.2)(0.7) = 0.14

P(DER and DER) = 0.22 = 0.04

P(DER and DN) = (0.2)(0.1) = 0.02

P(DN and UP) = (0.1)(0.7) = 0.07

P(DN and DER) = (0.1)(0.2) = 0.02

P(DN and DN) = 0.12 = 0.01

Sum of probabilities = 1.00. (4)

Of these nine combinations, the state that yields a fully
UP combination is the first line with P(UP and UP)
= 0.72 = 0.49. Then states that are indicative of the
system being inoperative are those states on the third
and sixth to ninth lines in Eq. (4) above, which contain
at least one DOWN state, which sum to 0.19. The
DERATED states on the second, fourth, and fifth lines

add up to 0.32. Psys(DER) = 1 − Psys(UP) − Psys(DN)
= 1 − 0.49 − 0.19 = 1 − 0.68 = 0.32.

Shortcut Formulation Approach
Working on the same two-node simple series system,
let us calculate the system up, derated, and down
probabilities in Figure 6.

Psys(UP) = P1(UP)

P2(UP) = (0.7)(0.7) = 0.49. (5)

Psys(DER) = P1(UP + DER)P2(UP + DER)

− Psys(UP) = (0.7 + 0.2)2 − 0.72

= 0.81 − 0.49 = 0.32. (6)

Psys(DN) = 1 − Psys(UP) − Psys(DER)

= 1 − 0.49 − 0.32 = 0.19. (7)

Active Parallel System with Singly Derated
States
The parallel system with IN(s = 1) and OUT(t = 4)
both 100% reliable, 2 and 3 DER are shown in
Figure 7 in Example 7:

Longer State Enumeration Approach
The system-UP scenario is when at least one of
the middle two states is UP. This is possible
when UP–UP, UP–DER, DER–UP, UP–DN, and
DN–UP combinations exist whose sum = 0.49 +
0.14 + 0.14 + 0.07 + 0.07 = 0.91. Then the system-
DER is when at least one of the states is DER. This is
when DER–DER, DER–DN, DN–DER combinations
exist whose sum = 0.04 + 0.02 + 0.02 = 0.08. The
only remaining combination is DN–DN, whose
probability is 0.12 = 0.01, or by subtraction.

Shortcut Formulation Approach
Working on the same four-node simple parallel–
series system, let us calculate the system up, derated,
and down probabilities in Figure 7.

Psys(UP) = P1(UP){1 − [1 − P2(UP)][1 − P3(UP)]}
P4(UP) = (1.0)[1 − (1 − 0.7)2](1.0) = (1.0)(0.91)

= 0.91. (8)

Psys(DER) = P1(UP)P4(UP)

− [1 − {1 − P2(UP + DER)}
× {1 − P3(UP + DER)}]
− Psys(UP) = 1∗(1 − 0.12) − 0.91

= 0.99 − 0.91 = 0.08. (9)

Psys(DN) = 1 − Psys(UP) − Psys(DER)

= 1 − 0.91 − 0.08 = 0.01. (10)
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FIGURE 6 | Example 6: simple series
system with a derated state.
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FIGURE 7 | Example 7: active parallel system with IN(1) and OUT(4)
full reliability; others(2,3) are derated.

Simple Parallel–Series System with Singly
Derated States
A simple parallel–series system with singly derated
states is shown in Figure 8 in Example 8.

Longer State Enumeration Approach
The parallel and series topologies merged will con-
tain 34 = 81 combinations, such as UP–UP–UP–UP,
DER–UP–UP–UP all the way to DN–DN–DN–DN.
This method is cumbersome and time consuming to
distinguish the desirable states by enumerating. The
shortcut technique is faster.

Shortcut Formula Approach

P(UP) = P1(UP)P4(UP){1 − [1 − P2(UP)][1 − P2(UP)]}
= (0.7)(0.7)[1 − (1 − 0.7)2]

= (0.49)(0.91) = 0.4459. (11)

2
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1:2
{1.0, 0.0}

1:3 
{1.0, 0.0}

3:4 
{1.0, 0.0}

2:4 
{1.0, 0.0}

1
{0.7, 0.2}

4
{0.7, 0.2}

3 
{0.7, 0.2}

FIGURE 8 | Example 8: a simple parallel–series system with single
derated states.

Psys(DER) = P1(UP + DER)P4(UP + DER)

− {1 − [1 − P2(UP)][1 − P3(UP)]}
− Psys(UP) = (0.7 + 0.2)2(1 − 0.12)

− 0.4459 = (0.81)(0.99) − 0.4459

= 0.356. (12)

Psys(DN) = 1 − Psys(UP) − Psys(DER)

= 1 − 0.4459 − 0.356 = 0.19. (13)

An Active Parallel System with Doubly
Derated States
A simple parallel system with derated and degraded
states is shown in Figure 9 in Example 9.

Using the shortcut formulation approach (the
state enumeration method requires SN = 44 = 256
combinations in general; here, due to 1 and 4 being
full states, 42 = 16, and therefore cumbersome to
work with), we get, using the same logic as we
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FIGURE 9 | Example 9: active parallel–series system with doubly
derated states for 2 and 3.

used earlier.

P(UP) = P1(UP)P4(UP){1 − [1 − P2(UP)]

× [1 − P3(UP)]} = (1.0)

× [1 − (1 − 0.4)2]

= 1 − 0.36 = 0.64. (14)

Psys(DER) = (1.0){1 − [1 − P2(UP + DER)]

× [1 − P3(UP + DER)]} − Psys(UP)

= (1.0)(1 − 0.32) − 0.64

= 0.91 − 0.64 = 0.27. (15)

Psys(DEGR) = (1.0)∗{1 − [1 − P2(UP + DER

+ DEGR)][1 − P3(UP + DER

+ DEGR)]} − Psys(UP) − Psys(DER)

= (1.0)(1 − 0.12) − 0.64 − 0.27

= 0.99 − 0.64 − 0.27 = 0.08. (16)

Psys(DN) = 1 − Psys(UP) − Psys(DER)

− Psys(DEGR)

= 1 − 0.64 − 0.27 − 0.08 = 0.01. (17)

A Combined System Example with Multiple
Derated States
A hydroelectric power plant in Figure 10 can generate
100% (fully operating), 75% (derated 1), 50%
(derated 2), 25% (derated 3) or 0% (fully down)
of rated electric power capacity depending on the
water storage level and thus the amount of steam flow
reaching the turbine.15,28 The corresponding system
states are 1, 2, 3, 4, and 5. The power plant consists
of four turbines in active parallel and an output

transformer in series with the turbines. The available
turbine with maximal power output is always used.
For any demand level of w = 1, 2, 3, 4, 5, the
combined system reliability function of states takes the
following recursive form in Example 10 of Figure 1.

Rsys(w) =

 w∑

j=1

R5j


 [

1 −

1 −

w∑
j=1

R1j




×

1 −

w∑
j=1

R2j





1 −

w∑
j=1

R3j




×

1 −

w∑
j=1

R4j


]

−
w∑

j=1

Rsys(j − 1).

(18)

where w = 1, 2, 3, 4, 5 and Rsys(0) = 0.0
MSS elements are statistically independent.

If Rw1 = 0.4, Rw2 = 0.3, Rw3 = 0.15, Rw4 = 0.1, and
Rw5 = 0.05, w(state) = 1,. . .,5 as shown in Figure 10,
then the system reliabilities Rsys(w) are:

Rsys(1) = 0.4[1 − (1 − 0.4)4] = 0.34816. (19)

Rsys(2) = (0.4 + 0.3){1 − [1 − (0.4 + 0.3)]4} − R(1)

= 0.69433 − 0.34816 = 0.34617. (20)

Rsys(3) = (0.4 + 0.3 + 0.15)

× {1 − [1 − (0.4 + 0.3 + 0.15)]4}
− R(1) − R(2) = 0.84957 − 0.34617

− 0.34816 = 0.15524. (21)

Rsys(4) = (0.4 + 0.3 + 0.15 + 0.1)

× {1 − [1 − (0.4 + 0.3 + 0.15 + 0.1)]4}
− R(1) − R(2) − R(3)

= 0.94999 − 0.15524 − 0.34617 − 0.34816

= 0.10042. (22)

Rsys(5) = (0.4 + 0.3 + 0.15 + 0.1 + 0.05)

× {1 − [1 − (0.4 + 0.3 + 0.15 + 0.1

+ 0.05)]4} − R(1) − R(2) − R(3) − R(4)

= 1 − R(1) − R(2) − R(3) − R(4)

= 1 − 0.10042 − 0.15524 − 0.34617

− 0.34816 = 0.05001. (23)

Large Network Examples Using Multistate
Overlap Technique
Using Figure 4 for the 19-node large cyber network,
we can calculate the ingress–egress overlap reliability
using multistate (up = 0.7, derated = 0.2, down = 0.1)
as illustrated in Figure 11 for Example 11. Similarly
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FIGURE 10 | Example 10: power
plant with four multiple derated
turbines (nodes 1 to 4) in parallel and
a transformer (egress node 5) in
series, and node 0 (as an ingress
dummy node with full reliability).
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FIGURE 11 | Example 11: implementation of multistate overlap reliability to 19-node network in 1.26 s. Solution (s = 1, t = 19): full reliability =
0.36, derated reliability = 0.43, full unreliability = 0.21.

using Figure 5 data, we can calculate multistate
reliability in Figure 12 for Example 12.

WEIBULL RELIABILITY EVALUATION

Motivation
When modeling real-life networks, industry engineers
have quickly found that static reliabilities do not
accurately depict component behaviors. For instance,
a 10-year-old fatigued component is much more
likely to fail than a brand new component recently
commissioned. Therefore, it is necessary to implement

a time-dependent reliability paradigm that can
systematically represent a wide range of failure
conduct. There are already several industry standard
methods capable of modeling sample component
heuristics or historical failure data including normal,
lognormal, and Weibull.

We have chosen Weibull distribution due to the
fact that it is currently one of the most widely utilized
methods in practical applications and because of the
versatile range of characteristics it can model from
infancy to useful life and wear-out periods. The benefit
of choosing Weibull distribution is that we can imple-
ment the generic mathematical behavior once and
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FIGURE 12 | Example 12: implementation of multistate overlap reliability to 52-node network in 18 s. Solution (s = 1, t = 52): full reliability =
0.05, derated reliability = 0.51, full unreliability = 0.44.

satisfy a wide range of component behavior by simply
manipulating the shape parameter, β, at runtime.
As shown in the subsequent graph of Figure 13, the
entirety of component behavior is spanned by β.

In recent years, the Weibull distribution has
become more popular as a reliability function. It is
named after the Swedish scientist Waloddi Weibull,
who used it in analysis of the breaking strength of
solids. A chief advantage of the Weibull distribution
is that as in the bathtub curve its hazard rate function
may be decreasing for β < 1, constant for β = 1,
or increasing for β > 1. When β = 2, the Weibull
is called the Rayleigh pdf. The Weibull density and
reliability functions are, respectively,

f (t) = βtβ−1

αβ
e−(t/α)β , t � 0, α, β > 0. (24)

R(t) = e−(t/α)β , t � 0, α, β > 0. (25)

The Weibull family of distributions is a member of
the family of extreme value distributions. The Weibull
distribution is probably the most widely used family
of failure (e.g., electronic component, mechanical
fatigue, etc.) distributions, mainly because by proper
choice of its shape parameter β, it can be used as an
IFR (increasing failure rate), DFR (decreasing failure
rate), or CFR (constant failure rate, as in the negative
exponential case). Often, a third parameter, known
as the threshold or location parameter, t0 is added to

obtain a three-parameter Weibull, where

R(t) = e−(t−t0/α)β , t � t0 > 0, α, β > 0. (26)

As the graph depicts, when 0 < β < 1, the
reliability distribution function represents a failure
rate that declines over time. The range of β (shape
value) depicts component status, where new units
at infancy fail early when β < 1, and the reliability
of the average unit steadies out at β = 1, and the
defective components wear out of the sample when
β > 1. That is, β = 1 denotes a constant failure rate.
The failure of constant rate components is generally
caused by random events. As β increases from 1,
the component fails at an increasing rate over time.
These are components whose useful lives are limited
by environmental stress in the system. The longer a
component is in use, the more likely it is to fail.

Weibull Methodology
Inside the overlap algorithm, there are three types
of arithmetic performed on node reliabilities; mul-
tiplication, addition, and subtraction. In order to
incorporate Weibull reliability directly into the algo-
rithm, we must first find a way to define and implement
Weibull math. Unfortunately, because of the nature
of the survival (reliability) distribution function, this
is not possible. Multiplication is only possible when
both components being multiplied share the same
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FIGURE 13 | Weibull reliability distributions.
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shape parameter. When multiplying heterogeneous
components, the resultant will not simplify back into
cumulative distribution function (cdf) form such as
that of a reliability distribution. To compound mat-
ters, addition and subtraction will definitely not result
in a standard cdf regardless of whether the nodes are
homogenous or heterogeneous. Consider the fact that
at t = 0 a two-parameter Weibull reliability should
always be 1; if we were to add two components, the
value of t = 0 would be 1 + 1 or 2, directly conflicting
with the reliability bounds.

Unfortunately, as we have seen in the past few
examples, there is no way of supporting Weibull
math in systems containing hybrid shape parameters
without incurring a quantitatively large margin of
error. The solution lies in breaking the reliability of
each component into an array of static reliabilities
at evenly distributed points in time. The overlap
algorithm is run generating a multitude of reliabilities.
Finally, the reliability plot is used to generate a final
Weibull goodness of fit.

Overlap Algorithm Applied to Weibull
Distributed Components
Before delving into how to estimate a final pair
of shape and scale parameters from the solution
generated by the overlap algorithm, let us first walk
through an example of a slightly more complex
network up to this point. Consider the following
Figure 14 network15 from node 1 to node 19 in which
each node has both β and α equal to 1 assumed. See
Example 13 in Figure 14 tabulated in Table 3.

Estimating Weibul Parameters for
Nineteen-Node Example
Now that we have generated a graphical result, we
can use basic axis scale regression and linear least
squares to approximate the values for α and β. The
goal is to adjust the scale of the x- and y-axis until
the result is a straight line with a slope of m. Linear
least squares will then be used to determine the best
fit line through the linear plot points to return the
most correct value for m.

TABLE 3 Nineteen-Node Weibull Overlap Results

Time Reliability Time Reliability Time Reliability Time Reliability

0.0 1 1 0.02736 2.0 0.00041 3 0.00001

0.1 0.79467 1.1 0.01801 2.1 0.00027 3.1 0

0.2 0.59842 1.2 0.01184 2.2 0.00018

0.3 0.43235 1.3 0.00778 2.3 0.00012

0.4 0.30315 1.4 0.00511 2.4 0.00008

0.5 0.20812 1.5 0.00336 2.5 0.00005

0.6 0.14079 1.6 0.00221 2.6 0.00003

0.7 0.09427 1.7 0.00145 2.7 0.00002

0.8 0.06268 1.8 0.00096 2.8 0.00002

0.9 0.04148 1.9 0.00063 2.9 0.00001
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FIGURE 14 | Example 13: 19-node Weibull network.

Recall that the natural logarithm of the reliability
function for a Weibull plot by using Eq. (25) on page
14 is:

– ln(r) = (t/α)β. (27)

Graphing the above equation depicts an exponential
curve with a power of β (=slope) as in Figure 15.

To determine the value of β, take the log of
both axis and use linear least squares to determine the
slope. See Figure 16.

The x-coordinates are given by log(t), whereas
the y-coordinates are log[-ln(r)] in Table 4 as depicted
in Figure 16.

The best line slope function for calculating first-
degree polynomials for n number of x and y plot
points are given in Eqs. (28) and (29), respectively, as
follow:

m = (�y)(�x) − n(�xy)
(�x)2 − n(�x2)

. (28)

Substituting the x and y plot functions from above
yields the slope to attain the least square estimation
(LSE):

β = {� log[−ln(r)]}[� log(t)] − n{� log(t) log[−ln(r)]}
[� log(t)]2 − n[� log(t)2]

.

(29)
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FIGURE 15 | Exponential graph for β.
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TABLE 4 Nineteen-Node Linear Data for β with Least Squares Calculations

t r log(t) log[–ln(r)] log(t)2 log(t)log[–ln(r)]

0 1 − − − −
0.1 0.79467 –1 −0.638596411 1 0.638596411

0.2 0.59842 −0.698970004 −0.289491328 0.488559067 0.202345755

0.3 0.43235 −0.522878745 −0.076486661 0.273402182 0.039993249

0.4 0.30315 −0.397940009 0.076832447 0.158356251 −0.030574705

0.5 0.20812 −0.301029996 0.19580018 0.090619058 −0.058941727

0.6 0.14079 −0.22184875 0.292363714 0.049216868 −0.064860524

0.7 0.09427 −0.15490196 0.373204919 0.023994617 −0.057810173

0.8 0.06268 −0.096910013 0.442434748 0.009391551 −0.042876357

0.9 0.04148 −0.045757491 0.502774402 0.002093748 −0.023005695

1 0.02736 0 0.556142408 0 0

1.1 0.01801 0.041392685 0.603883249 0.001713354 0.024996349

1.2 0.01184 0.079181246 0.647018132 0.00626967 0.051231702

1.3 0.00778 0.113943352 0.68629647 0.012983088 0.07819892

1.4 0.00511 0.146128036 0.722350541 0.021353403 0.105555666

1.5 0.00336 0.176091259 0.755555822 0.031008132 0.133046776

1.6 0.00221 0.204119983 0.786379612 0.041664967 0.160515793

1.7 0.00145 0.230448921 0.815324783 0.053106705 0.187890717

1.8 0.00096 0.255272505 0.841895892 0.065164052 0.214912873

1.9 0.00063 0.278753601 0.867455156 0.07770357 0.241806249

2 0.00041 0.301029996 0.892058599 0.090619058 0.268536396

2.1 0.00027 0.322219295 0.91471797 0.103825274 0.294739779

2.2 0.00018 0.342422681 0.935635908 0.117253292 0.320382956

2.3 0.00012 0.361727836 0.955592456 0.130847027 0.345664391

2.4 0.00008 0.380211242 0.974672114 0.144560588 0.370581295

2.5 0.00005 0.397940009 0.99578816 0.158356251 0.396263949

2.6 0.00003 0.414973348 1.017630634 0.17220288 0.422289591

2.7 0.00002 0.431363764 1.034218361 0.186074697 0.446124325

2.8 0.00002 0.447158031 1.034218361 0.199950305 0.462459046

2.9 0.00001 0.462397998 1.061185693 0.213811908 0.49069014

3 0.00001 0.477121255 1.061185693 0.227644692 0.506314249∑
2.423660075 19.03804202 4.151746254 6.125067395

Extrapolate the values in the plot table to quickly find
the various sums in Table 4.

The number of plot points, n, is 30. The first
and last points are omitted as the values of 0 for time
and reliability would cause the log functions to return
−∞. Solve for β and α11,27 in Eqs. (30) and (31) as
follows, respectively:

β =
{� log[−ln(r)]}[� log(t)]
−n{� log(t) log[−ln(r)]}
[� log(t)]2 − n[� log(t)2]

β =19.03804202×2.423660075− 30×6.125067395
2.4236600752 −30×4.151746254

β = 1.16. (30)

Use the value of β to estimate for α. Recall the
exponential equation for—ln(r):

– ln(r) = (t/α)β.

Solving for α produces:

– ln(r)1/β = t/α
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FIGURE 16 | Linear graph for β .

α = t/– ln(r)1/β

α = t/– ln(r)1/1.159524

α = t/– ln(r)0.862423. (31)

Graphing t versus − ln(r)0.862423 produces a regression
line, the slope of which is 1/α. Again, we use the linear
LSE principle to approximate the value for α. As the
slope of the line is the inverse of the scale parameter,
the inverse of the least squares slope formula is used
for result interpretation as in Table 5.

1/m = (�x)2 − n(�x2)
(�y)(�x) − n(�xy)

.

Use the equation obtained above to solve for α:

α = (�t)2 − n(�t2)
[� − ln(r)1/β](�t) − n{�t[−ln(r)1/β]}

α = (46.5)2 − 30 × 94.55
135.4755627 × 46.5 − 30 × 273.4606493

α = 0.354085. (32)

To verify our results and determine the margin of
error, we can chart and graph our original plot points
versus the evaluation of the determinate function at
each plot point in time. The difference between the
generated LSE results and the observed is placed in
the final column titled � (delta) as in Table 6.

The sum of the difference is 0.124193; a
small margin of error as can be seen in the
plots of the two graphs. The sum of the error
squares will be even more negligible and miniscule
(=0.00168). Note the x-axis (time) has been reduced
to a maximum of 1.6. This is the point at which
the plotted reliability function f (t) becomes close
enough to the axis to appear as zero and help to
better illustrate the similarity of the two lines. See
Figure 17.

To sum up the past series of calculations, once
a set of plot points has been generated by the overlap
algorithm for a Weibull network, the two equations

for α and β are used in succession to estimate the shape
and scale parameters, respectively, of the resulting
Weibull solution. See Figure 18 for Table 3.

Fifty-Two Node Weibull Example for
Estimating Weibull Parameters
Let us try the overlap algorithm for Weibull networks
again, as in Figure 19, this time for a substantially
more complicated network. In this 52-node 72-
link network,15 we will again use unity for both
the shape and scale parameters as we generate the
reliability block diagram from node 1 to node 52. See
Example 14 in Figure 19.

For each plot point, calculate the values for
log(t), log[–ln(r)], log(t)2, and log(t)log[–ln(r)] as in
Table 7.

Note that the more points, the more accurate the
plot will be, but more microprocessor runtime will be
observed.

Find the sums of each of the calculated columns
and apply the values to the equation for the shape
parameter in Table 8. Given the new-found value
for β in Eq. (33), compute the values required to
estimate the scale parameter α in Eq. (34). Calculate
− ln(r)1/β , t2, and t[–ln(r)1/β] and their corresponding
sums across the plot as shown in Tables 9 and 10.

β =
{� log[− ln(r)]}[� log(t)]
−n{� log(t) log[− ln(r)]}
[� log(t)]2 − n[� log(t)2]

β =
6.299380256 × −3.440236967
−10 × −0.939435447

−3.4402369672 − 10 × 2.095633341
β = 1.370000185. (33)

α = (�t)2 − n(�t2)
[� − ln(r)1/β](�t) − n{�t[− ln(r)1/β]}

α = 5.52 − 10 × 3.85
24.79955109 × 5.5 − 10 × 24.79955109

α = 0.1558046056966797. (34)
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TABLE 5 Nineteen-Node Linear Data for α with Least
Squares Calculations

r t –ln(r)1/β t2 t[–ln(r)1/β ]

1 0 0 0 0

0.79467 0.1 0.281358356 0.01 0.028135836

0.59842 0.2 0.562776615 0.04 0.112555323

0.43235 0.3 0.859085029 0.09 0.257725509

0.30315 0.4 1.164828702 0.16 0.465931481

0.20812 0.5 1.475239606 0.25 0.737619803

0.14079 0.6 1.787068374 0.36 1.072241025

0.09427 0.7 2.098265681 0.49 1.468785977

0.06268 0.8 2.407497631 0.64 1.925998105

0.04148 0.9 2.713964545 0.81 2.442568091

0.02736 1 3.017379678 1 3.017379678

0.01801 1.1 3.317437553 1.21 3.649181308

0.01184 1.2 3.614125826 1.44 4.336950991

0.00778 1.3 3.907309449 1.69 5.079502284

0.00511 1.4 4.197315986 1.96 5.87624238

0.00336 1.5 4.48341211 2.25 6.725118165

0.00221 1.6 4.766414464 2.56 7.626263143

0.00145 1.7 5.048411906 2.89 8.58230024

0.00096 1.8 5.321944188 3.24 9.579499538

0.00063 1.9 5.599035378 3.61 10.63816722

0.00041 2 5.879383438 4 11.75876688

0.00027 2.1 6.149980591 4.41 12.91495924

0.00018 2.2 6.41082401 4.84 14.10381282

0.00012 2.3 6.669984716 5.29 15.34096485

0.00008 2.4 6.927548473 5.76 16.62611633

0.00005 2.5 7.224212891 6.25 18.06053223

0.00003 2.6 7.544456964 6.76 19.61558811

0.00002 2.7 7.797109302 7.29 21.05219512

0.00002 2.8 7.797109302 7.84 21.83190605

0.00001 2.9 8.226040953 8.41 23.85551876

0.00001 3 8.226040953 9 24.67812286∑
46.5 135.4755627 94.55 273.4606493

The final result for the 52-node Weibull system as in
Figure 19 and Table 11 will be given in Eq. (35) and
plotted in Figure 20.

R(t) = e−(t/0.155)1.37
, t � 0, α, β > 0. (35)

The sum of � (difference errors) is 0.02849,
which is satisfactorily negligible for a large complex
network of 52 nodes and 72 links which would
normally take years if calculated manually. The
squares sum of errors is even smaller to be 0.00085 as
in Table 11.

TABLE 6 Nineteen-Node Weibull Results Comparison

t r (observed) r = e−(t/0.35)1.16
� (difference)

0 1 1 0

0.1 0.79467 0.793872314 0.000797686

0.2 0.59842 0.597116825 0.001303175

0.3 0.43235 0.438171073 0.005821073

0.4 0.30315 0.316047967 0.012897967

0.5 0.20812 0.224921716 0.016801716

0.6 0.14079 0.158303476 0.017513476

0.7 0.09427 0.1103625 0.0160925

0.8 0.06268 0.076300916 0.013620916

0.9 0.04148 0.052360252 0.010880252

1 0.02736 0.03568977 0.00832977

1.1 0.01801 0.024177139 0.006167139

1.2 0.01184 0.016285165 0.004445165

1.3 0.00778 0.010911397 0.003131397

1.4 0.00511 0.007274771 0.002164771

1.5 0.00336 0.004827687 0.001467687

1.6 0.00221 0.003189728 0.000979728

1.7 0.00145 0.002098764 0.000648764

1.8 0.00096 0.001375494 0.000415494

1.9 0.00063 0.000898089 0.000268089

2 0.00041 0.000584277 0.000174277

2.1 0.00027 0.000378811 0.000108811

2.2 0.00018 0.000244788 6.4788E-05

2.3 0.00012 0.00015768 3.76803E-05

2.4 0.00008 0.000101259 2.12594E-05

2.5 0.00005 6.4835E-05 1.4835E-05

2.6 0.00003 4.13947E-05 1.13947E-05

2.7 0.00002 2.6356E-05 6.35602E-06

2.8 0.00002 1.6736E-05 3.26395E-06

2.9 0.00001 1.05998E-05 5.99833E-07

3 0.00001 6.69654E-06 3.30346E-06

DISCUSSION AND CONCLUSIONS

This network reliability evaluation algorithm may
open many doors in the vast reliability engineering
field. Of the currently available free resources, most
if not all impose strict component or topology limits
such as pure series–parallel. The rest of the methods
are only commercially available and no one knows,
unless a client purchases it, about what needs to be
done, and how and why?29 As we have seen in the
performance characteristics of complex cyber network
reliability generation, because of the hardware and
time resources required to perform the algorithmic
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TABLE 7 Fifty-Two Node Linear Data for β with Least Squares Calculations

t r log(t) log[–ln(r)] log(t)2 log(t)log[–ln(r)]

0.0 1 — — — —

0.1 0.577760 −1 −0.260746792 1 0.260746792

0.2 0.247430 −0.698970004 0.145080609 0.488559067 −0.101406994

0.3 0.084700 −0.522878745 0.392457705 0.273402182 −0.205207792

0.4 0.025000 −0.397940009 0.566894464 0.158356251 −0.225589988

0.5 0.006710 −0.301029996 0.699330868 0.090619058 −0.210519568

0.6 0.001700 −0.22184875 0.804625068 0.049216868 −0.178505065

0.7 0.000410 −0.15490196 0.892058599 0.023994617 −0.138181625

0.8 0.000100 −0.096910013 0.96427568 0.009391551 −0.093447969

0.9 0.000020 −0.045757491 1.034218361 0.002093748 −0.047323237

1.0 0.000010 0 1.061185693 0 0

1.1 0
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FIGURE 17 | Linear graph for 1/α.
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FIGURE 18 | Nineteen-node Weibull results for graphical
comparison.

operations; newer algorithms other than for those
commercially marketed have not been studied at large.
The overlap algorithm presented in this article, along
with the associated performance tuning activities,
greatly increases the size and complexity of the
networks that are possible.14,15,27 This expansion of
capability moves the presented set of algorithms from
a tool that can only be used in demonstrations and
educational activities to an enterprise-level solution

TABLE 8 Fifty-Two Node Least Squares
Sum for β

Linear least squares sums for β∑
log(t) −3.440236967∑
log[–ln(r)] 6.299380256∑
log(t)2 2.095633341∑
log(t)log[–ln(r)] −0.939435447

Number of plot points 10

TABLE 9 Fifty-Two Node Linear Data for α with Least
Squares Calculations

T r –ln(r)1/β t2 t[–ln(r)1/β ]

0.0 1 — — —

0.1 0.577760 0.640147819 0.01 0.064014782

0.2 0.247430 1.281700255 0.04 0.256340051

0.3 0.084700 1.956920992 0.09 0.587076298

0.4 0.025000 2.637361592 0.16 1.054944637

0.5 0.006710 3.307975147 0.25 1.653987573

0.6 0.001700 3.960862039 0.36 2.376517223

0.7 0.000410 4.599893257 0.49 3.21992528

0.8 0.000100 5.204761729 0.64 4.163809383

0.9 0.000020 5.866299131 0.81 5.279669218

1.0 0.000010 6.14326665 1 6.14326665

than can be used to capably solve real-world scenarios.
In addition to static (or constant) node reliability,
the inclusion of both multistate and Weibull time-
dependent paradigms in this research paper increase
the algorithm’s practical applicability. These two
additional reliability features build on the power
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FIGURE 19 | Example 14: 52-node Weibull network, s = 1, t = 52.
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FIGURE 20 | Fifty-two node Weibull results graphical comparison.

TABLE 10 Fifty-Two Node Least
Squares Sum for the Intercept α

Linear least squares for α∑
t 5.5∑
–ln(r)1/β 35.59918861∑
t2 3.85∑
t[–ln(r)1/β ] 24.79955109

Number of plot points 10

α 0.1558046057

provided by the overlap algorithms to allow modeling
of real-world complex network behavior. Multistate
networks can be used by engineers to analyze
networks in which components can exhibit varying
levels of operational effectiveness. In applications
such as monitoring a packet-switching network,

TABLE 11 Fifty-Two Node Weibull Results Comparison

t r (observed) r = e−(t/0.155)1.37
�(difference)

0.0 1 1 0

0.1 0.577760 0.58272 0.004956812

0.2 0.247430 0.25338 0.005953392

0.3 0.084700 0.09353 0.008834758

0.4 0.025000 0.0305 0.005504651

0.5 0.006710 0.00898 0.002272338

0.6 0.001700 0.00242 0.000721854

0.7 0.000410 0.0006 0.000193922

0.8 0.000100 0.00014 0.0000403337

0.9 0.000020 0.000031 0.0000010568

1.0 0.000010 0.0000063 0.0000037283

1.1 0 0 0
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communications professionals can forecast and plan
for situations where traffic controlling hubs may expe-
rience heavy system loads and are operated in a
derated or degraded state.

The work illustrated in this article on Weibull
reliability distributions allows technicians to model
and analyze full life-cycle systems inspired from the
famous bath–tub curve.11,15,27,30 Using the various
behaviors provided by the reliability function, one
could model component wear-out or infancy periods
and preemptively replace system components before
they fail to act wisely and proactively rather than

retroactively. The benefits listed above prove that we
have documented an algorithm with a true indus-
try application, whereas the shortcomings really only
detail opportunities for growth rather than steadfast
barriers. The innovative algorithms documented in
this article provide a much needed and practically
versatile function for both academic and industrial
applications. Nondirectional reliability concerns such
as in cloud computing with independent units in an
additive rather than directional scenario are becoming
recently popular and are out of scope in this work
suitable in another setting.31
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